28写作材料 >工作计划

六年级数学鸽巢问题教案8篇

认真写好一份教案是能够提高我们在教学中的质量的,凭借准备好教案,能够更好地依照实际状态对课堂进度进行规律分析,28写作材料小编今天就为您带来了六年级数学鸽巢问题教案8篇,相信一定会对你有所帮助。

六年级数学鸽巢问题教案8篇

六年级数学鸽巢问题教案篇1

?教学内容】

教材第109页第1题,练习二十五第1、2、3、6题。

?教学目标】

1.复习加、减法和乘、除法各部分间的关系。

2.复习四则运算的运算顺序,并能正确进行计算。

3.运用加法和乘法的运算定律和相关的性质,进行简便计算。

?重点难点】

重点:运用加、减法和乘、除法各部分间的关系验算,四则运算的计算,运用运算定律进行简便计算。

难点:运算定律的运用,能进行简便计算。

?教学过程】

一、情景导入

问题导入。

1.加、减法各部分间的关系是怎样的?乘、除法各部分间的关系呢?

2.你知道四则运算的运算顺序是怎样的?你会计算吗?

3.你知道哪些运算定律?你会运用这些运算定律进行简便计算吗?

学生讨论、汇报,师评价。

二、探究新知

1.复习四则运算。

出示教材第109页第1题。

(1)根据第①个式子,先说说加法与减法的关系,再分别写出一个加法算式和一个减法算式。

(2)根据第②个式子,先说说乘法与除法的关系,再分别写出一个乘法算式和一个除法算式。

(3)你会根据第①个和第②个算式列出一个综合算式吗?再根据第①个、第②个和第③个算式列出一个综合算式。

(4)问:你能用一句话来总结四则运算的顺序吗?

学生组内讨论、交流、汇报。

小结:没有括号时先算乘除后算加减,有括号的要先算括号里面的。

2.复习运算定律。

(1)说一说我们学过哪些运算定律。

学生自由讨论、汇报,师评价。

(2)整理汇总运算定律,用字母表示。

加法:加法交换律:a+b=b+a

加法结合律:a+b+c=a+(b+c)

乘法:乘法交换律:a×b=b×a

乘法结合律:a×b×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(3)想一想,说一说下面的计算运用了什么运算定律。(教材第109页第1题(4)题)

学生独立完成,组内交流,汇报发言,师评价。

三、基础巩固

完成教材练习二十五第1、2、3、6题。

四、课堂小结

问:这节课你有哪些收获?

小结:本节课我们复习了加、减法和乘、除法各部分间的关系,并利用它们之间的关系进行验算,又复习了四则运算的运算顺序、运算定律,巩固和加深了该知识,会运用运算定律进行简便计算。

五、同步训练

教学至此,敬请选用《新领程》相关习题。

六年级数学鸽巢问题教案篇2

教学目标:

1、经历自主回顾和整理“数的认识”的过程。

2、能对学过的数进行较系统的整理,进一步掌握数的知识,发展数感。

3、积极参加自主整理的活动,获得成功的学习体验。

课前预习:

小组合作,交流整理:

回顾以前学过那些数,各举五例。分析不同类数之间有何关系。

教学过程:

一、结合实例,引导学生回忆数的认识

1、回顾数的意义。

师:你学过那些数?

(生回答)

师出示卡片,生齐读。师:举例说明这些数可表示什么?

(生回答)

2、数的分类。

完成问题(1)。

师:把上面的数填到合适的位置

(生回答)

师:每种类型的数,除了上面几种类型,你还能举出其它的吗?

(生回答)

3、数的互化

师出示问题(2)

呈现表格,完成数的互化,交流做法。

4、数的大小比较。

师出示问题(3)

学生自主完成。

5、适时小结。

师:通过刚才的练习,我们复习到数的哪些知识?

(生回答)

二、整理回顾有关倍数和因数的知识

1、引出问题。

师:小明的爸爸年龄数的十位上是最小的合数,个位上的数既不是质数也不是合数,且年龄是小明的五倍,同学们能猜出小明和他爸爸的年龄吗?

(生回答)

以上问题,我们运用了哪些数学知识呢?(倍数和因数)

明确:我们一起回顾和整理倍数和因数。

2、小组合作,梳理知识。

师:以小组为单位,将学过的“倍数和因数”知识整理下来。同学们认真讨论,由组长记录,一会儿我们要比一比,看一看哪一个小组整理的更加完整、科学合理。全班交流。

整理完善知识结构。

师:在这一部分中我们为什么先学因数和倍数?

组织学生讨论和交流

师:倍数和因数是基础,他们是相互依存的关系,今天整理出来的倍数和因数脉络图使这部分知识更加条理化和系统化。

三、复习正数和负数

师出示亮亮家4月份收支情况记录。

学生阅读题目内容。

出示问题(1)。

提醒学生估算时要注意的问题。(生回答)师:(生回答)师:(生回答)

出示问题(2)。

让学生举例说明什么是正数和负数。

学生自主完成问题(2)。

全班交流。

交流时重点关注怎样用正负号表示收支情况,以及怎样基数按每次结余。

四、人民币上的号码

1、让学生拿出自己身上的人民币。

2、提出兔博士的问题,鼓励学生根据自己你的经验大胆回答。

五、课堂小结

这节课我们复习了哪些内容?,你想提醒大家注意哪些问题?

六、课堂作业

第二课时

教学目标

1、 经历自主回顾和整理整数、小数、分数四则运算的过程。

2、 能对四则运算及它们之间的关系和运算定律进行归纳和整理,能选择合适的估算方法。

3、 体验自主整理数学知识的乐趣,提高计算能力。

课前回顾:

我们学过那些计算?分别写出整数、小数、分数的加、减、乘、除的算式各一道,并计算出结果。小组内交流计算的结果。

教学过程:

一、引导学生回顾和整理四则运算

1、师:回想一下我们学过哪些计算?

生回答。

小组长汇报 本组在课前练习中出现的问题。

2、议一议

出示问题(1)生归纳整理。

出示问题(2)生举例说明0和1在四则运算中的一些特殊情况。

生整理汇报。(注意提示0不能做除数)

3、各部分间的关系。

师:加法各部分间有什么关系?

生回答。

引导学生自己总结减法各部分间的关系。

师归纳出加减法互为逆运算。

同样的方法总结乘除法的关系。

说一说

师:上述关系在计算中有哪些应用?

启发学生回答,(进行验算、解方程等)

二、复习四则运算和运算律

1、师:我们学过的运算律有哪些?

小组讨论,自主总结,并写出字母表达式。

2、出示问题(2)

先说出运算顺序再计算。计算后交流做法,注意能简算的要简算。

3、 估算。

(1) 出示问题(1)

先让生独立思考并判断,再回答是如何判断的。

(2) 出示问题(2)

师生共同讨论怎样想,需要几个步骤。

计算问题(2)时可用竞赛的方式,看谁算得又对又快。

三、课堂总结

师:这节课我们整理和回顾了什么内容?需要注意什么?

六年级数学鸽巢问题教案篇3

教学目标:

1.学生进一步理解和掌握整数、小数、分数、百分数的意义,以及十进制计数法,理解小数的性质与分数的基本性质之间的联系,体会整数、小数、分数、百分数等概念之间的联系与区别;理解和掌握自然数和整数,因数与倍数、质数与合数、公因数与公倍数等概念的含义;增强用数表达信息的意思和能力,发展数感。

2.学生进一步理解四则运算的意义,理解和掌握整数、小数、分数等四则运算的算理、算法,能正确进行相关的口算、笔算和估算,以及用计算器计算;掌握四则混合运算的运算顺序,能正确进行四则混合运算;理解和掌握加法和乘法的运算律,能正确运用运算律进行一些简便运算和解决一些简单实际问题;获得必要的运算技能和运算能力;理解常见的数量关系,掌握分析和解决实际问题的基本方法,加深对常用的解决问题策略的感悟和体验,提高应用所学知识解决问题的能力。

3.学生进一步掌握用含有字母的式子表示简单数量关系的方法,初步理解等式的性质,会用等式的性质解一些简单的方程,能列方程解答两、三步计算的实际问题,提高分析问题和解决问题的能力,增强符号意识。

4.学生进一步理解和掌握比的意义和基本性质,理解比与分数、除法的关系,理解和掌握比例的意义和基本性质,会解比例;理解和掌握正比例和反比例的意义,能正确判断两种相关联的量是否成正比例或成反比例;会根据给出的有正比例关系的数据在方格纸上画图,能根据其中一个量的值估计另一个量的值;能运用比和比例等知识解决一些简单实际问题,积累解决问题的经验,增强应用意识。

5.学生进一步理解和掌握已经学过的平面图形和立体图形的特征,体会相关图形之间的联系和区别,了解有关平面图形周长、面积的计算方法,以及常见几何体表面积、体积的计算方法的推导过程,会解答有关平面图形的周长、面积,以及常见几何体表面积、体积计算的简单实际问题,发展空间观念。

6.学生进一步加深对轴对称、平移和旋转、放大与缩小等图形运动方式的认识,能正确描述图形的运动过程,能按要求再方格纸上画出运动后的图形;掌握用数对或用方向和距离描述物体位置的方法,能按要求在平面图上确定物体的位置或描述简单的行走路线,增强利用几何直观进行思考的能力。

7.学生进一步掌握常用的收集、整理、表示、分析和解释数据的方法,理解平均数的意义,了解常见的统计表、统计图的不同特点;能根据具体问题选择合适的统计表或统计图表示数据,能对统计表、统计图所呈现的数据进行一些简单的分析和思考,增强数感分析观念。

8.学生进一步了解简单随机现象的特点,体会事件发生的确定性和不确定性,知道事件发生的可能性是有大小的,能列举出简单随机事件发生的所有可能的结果,正确判断简单

随机事件发生的可能性的大小。

9.学生经历综合运用所学知识探索数学规律、解决实际问题的过程,进一步提高发现和提出问题、分析和解决问题的能力,感悟不同数学知识之间、数学与生活之间、数学与其他学科之间的联系,发展应用意识和创新意识。

10.学生经历观察与比较、分析与综合、抽象与概括、类比与归纳等思维活动过程,进一步发展合情推理和演绎推理能力,积累丰富的数学活动经验,获得关于分类、对应、转化、数形结合、方程、函数等数学思想方法的体验与感悟,提高数学素养。

11.学生在回顾学习内容、反思学习过程、完善认知结构的过程中,进一步养成良好的学习习惯,体验获取知识以及与同学合作交流的乐趣,增进对数学学习的积极情感,树立学好数学的信心。

教学重点:

复习一到六年级所学的所有内容。

教学难点:

能把所学知识灵活的综合运用。

课时安排:32课时

第1课时 整数、小数的认识整理与复习

教学内容:

苏教版六下p68~70“整理与反思”、“练习与实践”第1~9题

教学目标:

1.学生回顾整理整数与小数的相关知识,加深理解整数与小数的意义,沟通各种数之间的关系,进一步弄清相关概念间的联系与区别,构建整数、小数认识的知识网络。

2.学生通过复习,进一步了解整数、小数的相关知识,掌握数的知识之间的联系;增强用数表达和交流信息的意识和能力,进一步发展数感。

3.学生进一步体会数在日常生活中的广泛应用;感受认数的作用,产生对数的学习兴趣,提高学好数学的自觉性。

教学重点:

整数(自然数)和小数的意义、组成及读写。

教学难点:

理解数的相关知识间的联系。

教学过程:

一、揭示课题

谈话:小学阶段的数学内容我们已经全部学完了,从今天开始我们要对所学内容进行总复习。这节课我们进行整数和小数的整理与复习。(板书课题)

通过复习,进一步认识整数、小数的意义,掌握整数、小数的有关知识,提高数的应用能力。

二、回顾整理

1.讨论整理。

提问:首先请同学们回忆一下,你了解整数和小数的哪些知识?请你结合小面的问题先自已思考、整理,再与同学说一说。

出示问题:

(1)你能举例说说怎样的数是整数,怎样的数是负数,怎样的数是小数吗?小数的基本性质是什么?

(2)你能说出整数和小数的计数单位吗?相邻计数单位间的进率都是几?举例说一说。

(3)你能举例说说读、写整数和小数要注意什么吗?怎样比较整数和小数的大小?怎样求一个数的近似数?

让学生围绕上面三个问题思考,并在小组里讨论、交流。

2.组织交流。

(1)提问:你能举例说说怎样的数是整数,怎样的数是负数,怎样的数是小数吗?小数的基本性质是什么?

结合学生回答,相机板书。

(2)提问:你能说出整数和小数的计数单位吗?相邻计数单位间的进率都有是几?举例说一说。

根据学生回答呈现数位顺序表。

提问:整数部分计数单位排列有什么规律?每个数级上的数表示什么?小数部分的计数单位按怎样的顺序排列的?

一个数在不同数位上表示的意义有什么不同?请举个例子说一说。

(3)提问:你能举例说说读、写整数和小数要注意什么吗?怎样比较整数和小数的大小?怎样求一个数的近似数?

让学生依次交流不同内容的认识,举出例子说明。

交流数的读、写法。交流数的大小比较的方法。交流求近似数的方法。

三、应用练习

1.做“练习与实践”第1题 学生独立填写。全班交流,呈现结果。

提问:从直线上看,正数和负数有什么区别?

0右边的□里为什么要写小数?0左边的□里的数是怎样想的?

说明:正数和负数表示相反意义,在直线上都是从0开始按顺序排列,正数都大于0,负数都小于0。

2.做“练习与实践”第2题

(1)指名口答。

提问:你是怎样知道不同的数里的“2”表示多少的?

(2)提问:你能说出这里每个数的组成吗?

说明:一个数表示多少,可以看每个数位上各是由多少个计数单位组成的。

3.做“练习与实践”第3题。学生读题后指名回答。

4.做“练习与实践”第5题。学生独立填写在书上。

集体校对,有错的同学说说错误的原因,并订正。

5.做“练习与实践”第6题。指名学生读一读。

提问:怎样读数,能很方便地读出来?

说明:读数时先分级,按数级读既方便又能读准确。

6.做“练习与实践”第7题。

学生先把语文、数学课本的单价填写在书上的表格中,再算出10本、100本、1000本的总价,然后交流结果并呈现。

提问:你是怎样算的?一个数乘10、100、1000,怎样很快写出得数?一个数除以10、100、1000,可以怎样写出得数?

7.做“练习与实践”第8题。

(1)学生各自读题,再指名读一读表中的各个数。提问:通过读表中的数,你有什么想法吗?

(2)提问:你能把四个省(自治区)的面积改写成用“万平方千米”作单位的数,把四个省(自治区)的人口数精确到万位吗?

学生独立完成后集体交流。

(3)提问:请你分别按面积大小和人口多少,排列四个省(自治区)的顺序。学生独立完成后集体交流,说说是怎样比较大小的。

四、课堂总结

谈话:这节课我们复习了哪些内容?你有什么收获?还有什么问题?五、课堂作业

完成“练习与实践”第4、9题。

第2课时因数与倍数整理与复习

教学内容:

苏教版六下p70 “练习与实践”第10~14题,思考题。

教学目标:

1.学生通过回忆和整理,进一步明确因数和倍数的相关知识,加深认识相关概念之间的联系与区别,能求两个数的公因数和公倍数,并能运用这些知识解决相关实际问题。

2.学生在应用相关知识进行判断和推理的过程中,能说明思考过程,进一步培养归纳概括和演绎推理等思维能力,进一步增强分析问题和解决问题的能力。

3.学生进一步体会数学知识之间的内在联系,感受数学思考的严谨性和数学结论的确定性,激发学习数学的兴趣和学好数学的自信心。

教学重点:

掌握倍数和因数等相关概念,以及应用概念判断、推理。

教学难点:

理解相关概念的联系和区别。

教学过程:

一、揭示课题

1.回顾知识。

提问:上节课,我们已经复习了整数和小数的有关知识。

在整数知识里,我们还学习了因数和倍数,谁能来说说你是怎样理解因数和倍数的?一个数的因数和倍数各有什么特点?

结合学生交流,板书。

2.揭示课题。

引入:这节课,我们复习因数和倍数的相关知识。

通过复习,能进一步了解关于因数和倍数的知识,理解它们之间的联系和区别,并能应用这些知识。

二、基本练习

1.知识梳理。

提高:回想一下,在学习因数和倍数时,我们还学习了哪些相关的知识?学生回顾,交流,教师适当引导回顾。

提问:2、5、3的倍数各有什么特征?什么叫奇数,什么叫偶像?什么叫质数,什么叫合数?什么叫公因数和最大公因数?什么叫公倍数和最小公倍数?

根据学生回答,板书整理。

2.做“练习与实践”第10题。学生独立完成,指名板演。

集体交流,让学生说说找一个数的因数和倍数的方法。

3.做“练习与实践”第11题。

出示题目,学生直接口答。

提问:怎样判断一个数是不是2的倍数?判断是3和5的倍数呢?

追问:这里哪些是偶数,哪些是奇数?说说你是怎样想的。

4.做“练习与实践”第12题。

学生先独立写出质数和合数,再指名口答。追问:最小质数是几?最小的合数呢?提问:怎样判断一个数是质数还是合数?

指出:在判断一个是质数还是合数时,要看这个数有哪些因数,根据质数和合数的含义作出正确判断。

5.完成下面各题。

(1)写出12和18的公因数,说出最大是几。

(2)写出6和8的公倍数,说出最小是几。

(3)求出下面每组数的最大公因数和最小公倍数。

指名学生口答第(1)(2)题,教师板书找公因数、公倍数的过程。让学生说明怎样找两个数的公因数和最大公因数,公倍数和最小公倍数。让学生独立完成第(3)题,交流方法并板书结果。提问:每组数各是怎样找最大公因数和最小公倍数的?

6.把12分解质因数。让学生独立完成。

交流结果和方法,板书分解过程和结果。

三、综合练习

1.做“练习与实践”第13题。指名读第(1)题。

谈话:同学们可以按要求先试着写一写,有困难的同学可以用数字卡片摆一摆,再写出来。学生尝试练习后同桌交流。

集体校对,引导学生明白可以有序思考,逐一列举。学生自由读第(2)题后独立解答。

指名口答,集体评议,结合说说有公因数2的数、有公因数3或5的数各有什么特点。

2.做“练习与实践”第14题。

指出:根据条件,可以知道总棵树比6的倍数少1,比5和4的倍数也都少1. 启发:如果添上1棵,总棵树与6、5和4有什么关系?、 学生尝试解答。

集体交流,让学生说说思考的过程。

四、课堂总结

交流:这节课我们复习了哪些内容?把你的收获和大家分享一下。

第3课时 分数、百分数的认识整理与复习

教学内容:

苏教版六下p71~72“整理与反思”、“练习与实践”第1~10题。

教学目标:

1.学生加深对分数和百分数的认识,进一步理解分数的基本性质以及分数与除法的关系,进一步掌握小数、分数和百分数的互相改写,以及求百分数的方法。

2.学生经历知识整理和应用的过程,进一步了解分数、百分数相关知识之间的内在联系,提高观察比较、分析判断能力和解决问题的能力,进一步发展数感。

3.学生进一步体会分数和百分数在日常生活中的应用以及作用,增强数学应用意识;感受数学学习的乐趣,树立学好数学的信心。

教学重点:

加深理解分数、百分数的意义。

教学难点:

分数、百分数在实际生活中的应用。

教学过程:

一、揭示课题

谈话:前几节课我们一起复习了整数和小数的相关知识,这节课我们要对分数和百分数的相关知识进行整理和复习。

通过复习,要进一步认识分数和百分数的意义,体会它们之间的联系与区别,并能运用分数和百分数的相关知识解决一些实际问题。

二、回顾整理

1.回顾讨论。

提问:你了解分数和百分数的哪些知识?请大家联系下面的问题自己回顾整理,并且在小组里交流。

呈现以下四个问题:

(1) 什么叫分数?什么叫百分数?

(2) 分数和除法有什么联系?请你举例说明。

(3) 分数的基本性质是什么?你能用它来说明小数的性质吗?(4) 小数、分数和百分数怎样互相改写?

让学生围绕上面四个问题先独立思考,再在小组里讨论、交流。

2.组织交流,回答上面四个问题。

三、基本练习

1.做“练习与实践”第1题。学生独立填写后指名口答,说明理由。

强调:分数是看平均分成多少份,表示这样的几分;小数是看表示的十分之几、百分之几、

千分之几百分数是看这个数量占整体的百分之几。

2.做“练习与实践”第2题。

学生填写在书上,然后集体校对,让学生说说思考过程。

追问:第(2)题把一根绳子平均分成8段,为什么两次填写的结果不同?

3.做“练习与实践”第3题。学生独立填写。

集体交流,让学生说说是怎样想的,并说一说每个百分数表示的意义。4.做“练习与实践”第5题。学生先尝试填写,再集体交流。提问:这两组数分别会越来越接近几?

指出:这两组数按规律可以无限地填下去,这样填写第一组数会越来越接近1,第二组数会越来越接近0.

四、应用练习

1.做“练习与实践”第6题。学生读题,理解题意,先独立估计。

提问:你估计哪块花圃种玫瑰的面积所占的百分比最大?说说理由。指出:估计时,可以先想出相应的分数,再估计大小。

学生写出相应的百分数,并交流是怎样想的,再和估计的比一比。2.做“练习与实践”第7、8题。学生读题后独立解答,再集体交流。

提问:你能说说种子发芽率的具体含义吗?折扣表示什么?发芽率和折扣各是怎样求的?

3.做“练习与实践”第9题。

学生读题后,提问:你能根据所给信息,在图中表示出李华家上个月的支出情况吗?先独立思考并在图中表示。

五、课堂总结

1.交流小结。

提问:这节课我们复习了哪些内容?你有什么收获或体会?

2.布置作业。

课堂作业:完成“练习与实践”第4题,第9题第(2)小题,第10题。

常见的量

第4课时 常见的量整理与复习

教学内容:

苏教版六下p73“整理与反思”、“练习与实践”第1~6题。

教学目标:

1.学生进一步掌握质量、时间和人民币的单位及相邻单位的进率,能够根据实际选择、应用合适的单位;掌握单位之间的简单换算,以及量的简单计算。

2.学生在整理、应用常见的量及量的单位过程中,进一步体会各个量的具体意义;能说明对常见的量选择、分析、判断的理由,提高分析、判断和推理等思维能力。

3.学生在复习过程中进一步体会常见的量在日常生活中的应用,培养有据思考、判断、分析等良好的学习品质。

教学重点:

常见的量的归纳整理和应用。

教学难点:

掌握时间单位间的关系。

教学过程:

一、导入课题

引入:在我们的日常生产、生活和科学研究中,经常要接触各种量,并且进行各种量的计量。在小学阶段,我们学习过质量、时间和人民币这些常见的量和相应的计量单位。今天我们就复习这些常见的量。(板书课题)

通过复习,进一步认识质量、时间和人民币及相应的单位,了解各类量相邻单位的进率,进一步掌握单位间的简单换算,并提高计量单位应用的能力。

二、回顾整理

1.小组整理。

提问:常用的质量单位有哪些?(板书:质量)相邻单位之间的进率各是多少?常用的时间单位、人民币单位各有哪些?(板书:时间人民币)你能说说这些单位,以及相邻单位间的关系吗?请先独立整理,再小组交流。

学生整理,小组交流,教师巡视、指导。

2.集体交流。

(1)提问:你知道质量单位的哪些知识?

(2)提问:我们学习过哪些时间单位?你知道这些单位间的关系吗?说说你的认识。

提问:闰年有什么规律?怎样判断某一年是闰年还是平年?

提问:我们认识了哪两种计时法,这两种计时法有什么区别和联系?

24时计时法 普通计时法

(3)提问:关于人民币的单位你有哪些认识?

生:元 角 分

1元=10角1角=10分

三、基本练习

1.做“练习与实践”第1题。

学生直接填空。

集体反馈,指名说说分别填写了哪个单位,怎样想的。

指出:填写单位时,要先根据实际明确填写哪种量的单位,再根据具体物体选择合适的单位。

2.做“练习与实践”第2题。

学生先填写在书上,再指名口答结果,选择2—3题说说怎样想的。

提问:通过这题的练习,你对单位换算有了怎样的认识?

3.做“练习与实践”第3题。

学生先完成填空,再集体校队。

追问:每年第一季度的天数怎样计算?

四、应用练习。

1.做“练习与实践”第4题。

指名读题,理解题意。

学生独立计算。

集体校对,让学生说说是怎样计算的。

2.做“练习与实践”第5题。

学生读题,理解题意。

指名口答,让学生说出计算过程。

引导学生完整说出飞船进入预定轨道的时间时20__年6月16日18时55分。

3.做“练习与实践”第6题。

指名读题,理解题意。

学生独立解答。

集体交流,展示学生的解答过程及结果,要求说明怎样想的。

说明:像这样计算载重量的问题,一般要按较大数量计算,求出物体最重可能有多少,和能承载的重量比较、判断。

五、课堂总结

提问:这节课复习了哪些内容?通过这节课的复习,你有哪些收获?

第5课时 四则运算整理与复习

教学内容:

苏教版六下p74~75“整理与反思”、“练习与实践”第1~10题。

教学目标:

1.学生进一步掌握整数、小数、分数四则运算的法则及计算法则之间的联系,能选择口算、笔算、估算以及计算器等不同方法进行计算,进一步认识常见的数量关系,并能解决一些简单的实际问题。

2.学生在整理与复习的过程中,进一步了解计算原理,感受知识之间的内在联系,进一步体会基本的数量关系,提高运算能力,以及分析问题和解决问题的能力。

3.学生进一步养成独立 、认真计算等学习习惯,培养按规则计算的品质,增强学习数学的积极性,体会学习成功的乐趣。

教学重点:

理解四则运算的意义和法则。

教学难点:

正确进行四则运算。

教学过程:

一、 揭示课题

谈话:前几节课,我们只要复习了数的认识,今天开始我们要复习数的运算。这节课先复习数的四则运算。(板书课题)通过复习,同学们要熟悉掌握四则运算的法则,能选择不同方法进行计算,并能解决一些简单的实际问题。

二、 知识梳理

1.小组讨论。

引导:通常所说的四则运算是指加法、减法、乘法和除法。想一想,整数、小数、分数加、减法分别怎样计算?整数、小数和分数乘、除法呢?先独立思考,找一些例子想一想,再在小组里交流你的想法。

学生各自整理后在小组里讨论。

2.集体交流。

(1)提问:整数加、减法是怎样计算的?小数加、减法,分数加、减法呢?

追问:你能说说这些计算方法之间的联系吗?

生交流,汇报。

(2)提问:怎样计算整数、小数和分数的乘、除法?你能举出一些例子吗?

结合学生交流,用简单的例子说明,进一步明确法则。

提问:小数乘、除法计算和整数乘、除法有什么联系?要注意什么问题?

学生交流,总结。

提问:分数乘、除法计算有什么联系?

指出:分数乘法用分子相乘的积作分子,分母相乘的积作分母;分数除法用被除数乘除数的倒数,转化成分数乘法后按分数乘法的方法进行计算。

三、 基本练习

1.做“练习与实践”第1题。直接写出得数。

选择部分题目让学生说说计算的方法,进一步明确计算方法。

2.做“练习与实践”第2题。独立计算,并指名板演。

提问:比较每组两题的计算方法,你有什么发现?

3.做“练习与实践”第4题。

学生自由读题,独立思考分别选择哪种算法。

提问:每小题各适合口算、笔算、估算,还是用计算器计算?

指名口答,并说出想法。

四、应用练习

1.做“练习与实践”第5题。

出示表格,提问:从这张表中你能知道些什么?

学生回答后独立计算、填表。

集体交流结果,说明算法并呈现表里的结果。

提问:这里应用的是哪一组常见的数量关系?你能说出单价、数量和总价这一组数量关系式吗?

2.做“练习与实践”第6题。

学生读题,理解题意。

学生各自解答,指名板演。

集体校对,说明按怎样的数量关系解答的。

提问:这里应用的是哪一组常见的数量关系?能说出这一组数量关系式吗?

3.做“练习与实践”第9题。

出示情景图,提问:从图中你能知道哪些数学信息?

引导学生明确信息。

出示问题(1),学生独立思考、解答。

集体交流,让学生说说思考过程,说明可以用笔算,也可以用估算得出结论。

出示问题(2),学生独立解答。

集体交流,让学生说说思考过程,并板书算式、得数。

提问:你还能提出什么问题?

4.做“练习与实践”第10题。

出示统计表,让学生说说表中的信息。

提问:怎样比较他们的成绩更合理?把你的想法在小组里交流。

小组讨论后集体交流,指名说出合理的想法及理由。

学生各自计算,求出各人助跑摸高的厘米数想法于身高的百分之几,再比较得到的百分之几。出示问题(2),学生独立解答,提示可以用计算器计算。

五、课题总结

1.总结交流。

提问:通过这节课的复习,你有哪些收获?这些知识之间有什么联系?

2.课堂作业。完成“练习与实践”第3、7、8题。

第6课时 四则混合运算整理与复习(1)

教学内容:

苏教版六下p76“整理与反思”、“练习与实践”第1~5题。

教学目标:

1.学生进一步认识整数、小数、分数四则混合运算的运算顺序,能按运算顺序正确进行运算;进一步理解和掌握学过的运算定律和一些规律,并能应用运算定律或规律进行简便运算。

2.学生进一步增强观察、辨析能力和合理、简捷运算的能力,进一步培养分析问题、解决问题的能力。

3.学生通过计算、观察、比较、交流等活动,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感。

教学重点:

四则混合运算的运算顺序;理解和掌握运算律和一些规律。

教学难点:

灵活选择合理、简捷的算法。

教学过程:

一、谈话导入,揭示课题

谈话:上节课,我们一起回顾整理了加、减、乘、除四则运算的意义、关系,以及计算法则。今天这节课,我们在此基础上继续复习四则混合运算。(板书课题)

二、整理知识,沟通联系

1.复习运算顺序。

出示“练习与实践”第1题。

(1) 指名学生说说每题的运算顺序。

提问:能说说四则混合运算的运算顺序吗?请同桌相互说一说。

集体交流四则混合运算的运算顺序。

(2)学生独立计算,教师巡视、指导。

集体校队,做错的同学自己订正。

2.复习运算律。

(1)引导:在四则混合运算里,我们学习过运算律。回忆一下,我们学过哪些运算律?你能举例说明吗?小组讨论,按要求把课本上的表格填写完整。

小组讨论、填表。

集体交流,结合学生回答,板书呈现填表。

(2) 做“练习与实践”第2题。

学生独立计算,指名板演,教师巡视、知道。

集体校对,让学生说说每题是怎样想的,分别运用了什么运算律或规律。

说明:在计算时,如果应用运算律或运算规律,能先把其中的小数、分数计算凑成整数,或者能把一些计算凑成整十、整百的数使计算变得简单,就可以选择合理、简单的算法,使计算简便。追问:你觉得应用简便计算要注意些什么?

(3)下面各题,怎样算简便就怎样算。

学生计算,指名板演。

交流算法,要求说明计算方法和依据。三、实际应用,内化提升

1.做“练习与实践”第3、4题。指名读题,理解题意。

学生独立列综合算式解答,指名板演,教师巡视、指导。

集体校对,让学生说说每题分别是怎样想的,先算什么,再算什么?2.做“练习与实践”第5题。

学生读题,让学生说说题中的条件和问题。学生各自列综合算式解答,教师巡视,指导。集体交流,让学生说说每一步算的是什么。四、回顾反思,总结全课

提问:同学们回顾一下,这节课我们复习了哪些内容?你有什么收获与体会?

第7课时 四则混合运算整理与复习(2)

教学内容:

苏教版六下p77 “练习与实践”第6~10题。

教学目标:

1.学生进一步理解和掌握稍复杂的分数、百分数实际问题的数量关系和解题思路,能正确解答稍复杂的分数、百分数实际问题。

2.学生进一步认识分数、百分数实际问题的特点和解题方法,进一步体会分数、百分数实际问题的内在联系;能说明分析问题的过程,提高比较、分析、推理、判断等思维能力,增强分析问题和解决问题的能力。

3.学生加深体会分数、百分数在现实世界的实际应用,增强数学应用意识,提高学习数学的兴趣和学好数学的自信心;培养独立思考、主动交流的学习习惯。

教学重点:

稍复杂的分数、百分数实际问题的数量关系和解题方法。

教学难点:

理解各类分数、百分数实际问题的数量关系和解题思路。

教学过程:

一、揭示课题

谈话:上节课,我们复习了四则混合运算和运算律。这节课我们要复习分数、百分数的实际问题。(板书课题)通过复习,要进一步理清分数、百分数实际问题的数量关系和解题思路,掌握解题方法,提高解决分数、百分数实际问题的能力。

二、基本练习

1.根据下列问题找出单位“1”的量,并说出数量关系式。

(1)桃树棵树是梨树的几分之几?

(2)桃树棵树比梨树少几分之几?

(3)实际产量超过了计划的百分之几?

(4)实际降价了百分之几?

指名学生口答,并说说单位“1”的量是怎样找的。

2.根据条件找出单位“1”的数量,说出数量关系式。

说明:根据上面这样的条件,可以确定单位“1”的量,用单位“1”的量乘几分之几或百分之几,等于几分之几或百分之几的对应数量。三、应用练习

1.解答下列各题。

(1)李大爷收白菜300千克,已经售出240千克,已经售出几分之几?

(2) (题略)(3)(题略)

出学生读题,思考每题应怎样解答。

提问:这三题里表示单位“1”的量是哪个数量?为什么解答这三题的计算方法不相同?

2.解答下面各题。

你能列出每题的算式吗?请你说一说。

追问:为什么第(1)题只有一步计算,第(2)题要两步计算?解答分数、百分数实际问题要注意什么?

3.做“练习与实践”第7题。

学生读题后独立解答,指名板演,教师巡视、指导。集体校对,让学生说出解题思路,再说说有没有不同解法。

4.对比练习。

出示:(1)某市修建一条12千米长的高架公路,已经修了全长的60%,还有多少千米没有修?

(2)某市修建一条高架公路,已经修了全长的60%,还有4.8千米没有修。这条高架公路长多少千米?

指名读题,说说两题中的条件和问题。提问:这两题有什么相同点和不同点?交流解法,教师板书算式和结果。

结合交流要求学生说说这两题分别是怎样想的。追问:这两题的解题方法为什么不同?

5.做“练习与实践”第8题。

(1)学生读题,说说已知什么条件,第(1)题要求什么。让学生列式解答,指名板演。

交流:求一、二等奖的奖券一共多少张可以怎样想?这里每一步求的什么?

(2)让学生提出不同的问题,选择板书。

选择一个球两种奖券相差多少张的问题让学生解答。交流:你是怎样列式的?这个算是里每一步求的是什么?

6.做“练习与实践”第9题。

学生读题后独立解答。集体交流,让学生说说每道题的解题思路,教师板书算式和结果。提问:比较这三个实际问题,在解法上有什么联系和区别?

四、全课总结

这节课复习了什么内容?通过这节课的复习,你又有哪些收获?还有什么问题呢?2.课题作业。“练习与实践”第6、10题。

第8课时 解决问题的策略整理与复习(1)

教学内容:

苏教版六下p78~79“整理与反思”、“练习与实践”第1~5题。

教学目标:

1.进一步明确解决问题的一般步骤,能按一般步骤解决实际问题;了解小学阶段学习的解决问题的策略;能应用从条件或问题想起的策略分析数量关系并列式解决实际问题;能根据条件提出相应的问题。

2.能用从条件或问题想起的策略说明解决问题的思路,进一步体会实际问题数量之间的联系,培养学生分析、推理等思维能力和解决问题的能力。

3.进一步感受数学知识、方法在解决实际问题里的应用,体会解决问题策略的应用价值;培养勤于思考、善于思考的学习品质。

教学重点:

用从条件或问题想起的策略分析数量关系。

教学难点:

正确分析数量关系。

教学过程:

一、引入课题

谈话:今天的复习内容,是我们小学阶段学过的解决实际问题。通过今天的复习,要进一步掌握解决问题的一般步骤,整理并掌握学习过的解决问题的策略。对策略的应用,今天着重复习从条件想起、从问题想起分析数量关系的策略,能掌握分析方法,正确说明解决问题的思路并且解答实际问题,提高分析和解决问题的能力。

二、整理与反思

1.回顾讨论。

引导:大家先回顾一下学过的解决问题知识,同桌互相讨论、交流:解决实际问题的一般步骤是怎样的?我们学习过解决问题的哪些策略?可以联系实际问题讨论一下,这些策略在解决什么问题时用过。

2.交流认识。

(1)交流解决问题的步骤。

提问:大家回顾了学过的解决问题的步骤和策略,能说说解决实际问题时的一般步骤是怎样的吗?

(2)交流解决问题的策略。

提问:我们学习过解决问题的哪些策略?可以结合举出一些例子来说一说。你认为学习解决问题的策略有什么作用?

指出:从条件或问题想起分析数量关系是基本策略,有些问题还要通过列表、画图或者列举、转化、假设的策略才能清楚地找到解决问题的方法。所以学习策略可以帮助我们更清楚地了解数量间的联系,找出解决问题的方法。

三、练习与实践

1.做“练习与实践”第1题。

(1)让学生独立阅读第(1)(2)题。

让学生分别说一说每题的条件和问题,说说两道题哪里不一样。

(2)引导:这两题你能怎样想的?自己先思考准备怎样想,再同桌互相说说你的想法,看看有没有不同的想法,要先求什么,再求什么。

提问:你能说说第(1)题可以怎样想吗?还能怎样想?指名几个学生从条件想起说一说是怎样想的。提问:第(2)题你是怎样想的?有不同的想法吗?指名几个学生从问题想起说一说是怎样想的。

(3)学生独立解答,指名板演。

检查列式过程,让学生说说各题的每一步求出的什么。

提问:两题的问题都是求长袖衬衫的单价,为什么解答过程不一样?(4)引导:通过上面两题的解答,你有哪些体会?

2.做“练习与实践”第2题。

(1)让学生独立读题,了解题意。

引导学生观察图形,结合图形说说第(1)题小芳走过的路线是怎样的,第(2)题两人是怎样行走的。

引导:先看看小芳和小军的速度各是多少,想想两人大致在哪里相遇,在图上用一个点表示出来。交流:你估计大致在哪里相遇,怎样想的?

(2)让学生列式解答两个问题,教师巡视、指导。

①交流:第(1)小题是怎样列式的?这样列式是怎样想的?有没有不同的列式?这样列式又是怎样想的?

说明:解答实际问题,有时有不同的解答方法,这是因为分析方法不同,解决问题的过程或方法就可能不一样。

②交流:第(2)题怎样列式?这是根据什么数量关系列式的?也有不同的解法吗?这又是根据什么数量关系列式的?追问:这两种解法有什么联系?

解答上面两题,都和哪个常见的数量关系有关?

3.做“练习与实践”第4题。

让学生读题,说说从表格里的对应数值能知道什么,要解决什么问题。

引导:你能解决这个问题吗?自己想办法解答。交流:你是怎样解答的?这是怎样想的?还有不同的解答方法吗?这又是怎样想的?

提问:这两种解法思路有什么不同?能说说两种解法分别是先求的什么、再求的什么吗?

4.做“练习与实践”第5题。

让学生独立读题,摘录整理条件和问题。交流:你是怎样整理的?提问:根据整理的条件和问题,这题可以怎样想?说一说你的想法。追问:你认为整理的条件和问题,对于解决问题有什么好处?

四、总结与作业

1.总结交流。今天复习了解决问题的哪些内容?通过整理与练习,你有哪些收获?

2.布置作业。完成“练习与实践”第3题和第5题。

第9课时 解决问题的策略整理与复习(2)

教学内容:

苏教版六下p79“练习与实践”第6~9题。

教学目标:

1.学生能应用画图、列表、转化等策略分析和解决实际问题,能根据问题特点选择不同策略分析数量关系、列式解答,并能解释和说明自己所用的策略。

2.学生能依据相应的策略说明分析实际问题数量关系的思考过程,提高灵活、综合应用策略的能力,培养思维的深刻性和灵活性,发展分析、推理等思维和几何直观,以及分析问题、解决问题的能力。

3.学生进一步感受现实生活存在各类数学问题,体会解决问题策略的实际应用,培养学生面对实际问题用数学方法分析、处理的意识。

教学重点:

用画图、列表、转化等策略解决实际问题。

教学难点:

灵活选择策略解决实际问题。

教学过程:

一、揭示课题

谈话:上一节课我们复习了解决问题的相关内容,并且重点应用了从条件或问题想起的策略解决实际问题。今天继续复习解决问题,主要应用画图、列表的策略解决问题,并且能自己选择策略灵活地解决实际问题。

二、练习与实践

1.做“练习与实践”第6题。

(1)让学生读题,利用图形理解条件和问题。

交流:你知道了题里有哪些条件,要解决什么问题?(出示图形,根据交流注明长、宽的条件) 这块长方形菜地分成的两个部分各是什么形状的?

引导:要计算这里三角形的面积和梯形的面积,你能根据题里的条件在图上画一画,找到解决问题的思路吗?想一想怎样画,自己画一画。交流:你是怎样画的?

为什么想到在三角形的顶点画宽的平行线段?

说明:通过交流,我们知道根据黄瓜的面积比番茄面积少180平方米这个条件,可以在梯形中画出一个和种黄瓜的三角形地完全一样的三角形地块,这样就能直接看出黄瓜比番茄少的面积是右边这个长方形地块。让画法不合理的订正自己的画法。

(2)引导:现在你能看图说一说,解决这个问题可以怎样想吗?在四人小组里互相讨论,找找可以怎样解答这个问题。

交流:哪些同学想到了解决这个问题的思路?和大家交流一下。

结合交流,帮助学生理解不同思路。

(3)让学生选择一种思路解答,指名不同解法的学生板演。

引导学生结合图形分别说说不同解法中每一步算的什么。

(4)提问:我们刚才画图对于解答问题有什么好处?

2.下面的问题用哪个策略解决比较合适?请你应用恰当的策略解答。

出示:一个长方形长8分米,宽6分米。如果把一条长缩短到原来的一半,或者把一条宽缩短到原来的一半,都能得到一个梯形。这两个梯形面积会相等吗?算一算、比一比。

提问:想想这个图形分别怎样变化的,能用什么策略解决,用你想到的策略算一算、比一比,解决问题。学生独立解答,教师巡视、指导。

交流:你用了什么策略?怎样画图的?这两个梯形面积相等吗?你是怎样计算的?

说明:用画图的策略能找到相应的条件,计算各自的面积。这里虽然长方形通过不同的变化得到的梯形不同,但面积是相等的。

3.做“练习与实践”第7题。

提问:你能说说题里告诉我们什么,要解决什么问题?

引导:大家想一想杨大爷步行的过程,思考解决问题还需要什么条件;再列表或画图表示行走过程,看看从表里或图中能知道什么新条件。学生列表或画图,教师巡视、指导。

交流:你是怎样列表的?画图的是怎样画图表示的?

引导:大家先观察列出的表格或画出的图形,思考能得出哪个条件,可以怎样解决问题,各人独立解答。交流:你是怎样解答的?

你结合列表或画图,说说这里的每一步是怎样想的吗?列表或画图在解题过程中有什么作用?

4.做“练习与实践”第8题。

(1)让学生先根据题意补充线段图,再同桌交流怎样补充的,讨论怎样解答,有没有不同解答方法,然后选择一种方法解答。

学生画图、交流并解答,教师巡视,指名不同算法的学生板演。

(2)交流:线段图是怎样补充完整的?

你能联系线段图理解这里的不同解法,说说每种解法是怎样想的吗?自己观察、思考,不明白的可以合同学交流。提问:你能说说这些解法各是怎样想的吗?

指名交流,引导学生结合图形理解不同解法。

比较:哪种解法更方便一些?这里应用了哪个策略?

5.做“练习与实践”第9题。

学生读题,要求交流条件和问题。

提问:下面的线段图表示了哪些条件?还有什么条件没有表示出来?引导:根据从第一筐取出2放入第二筐,两筐苹果就同样重这个条件,表示第二筐苹果多重的线9

段怎样画呢?先看表示第一筐的线段想一想,再画一画。学生画图,教师巡视、指导。

交流:根据条件,表示第二筐苹果有多重的线段怎样画的?说说你的想法。

引导:请你看线段图,想想这两筐苹果的千克数之间有什么关系,能怎样解答,然后用你想到的方法解答出来。如果与困难,可以讨论讨论。学生解答,教师巡视、指导。

交流:你是怎样解答的?用了什么策略?

结合交流板书算式,并引导学生理解不同解法。反思:通过解答这道题,你有哪些体会?

三、总结交流提问

回顾今天解决问题的内容和过程,都应用了哪些策略?你对画图、列表、假设和转化这些策略的应用,有哪些新的认识?还有哪些收获?

第10课时 解决问题的策略整理与复习(3)

教学内容:

苏教版六下p80 “练习与实践”第10~13题,思考题。

教学目标:

1.学生能应用假设、列举等策略分析和解决实际问题,能根据问题特点选择恰当的策略或综合运用策略解决实际问题,并能解释和说明选择的策略和思路。

2.学生能根据策略说明分析问题的思考过程,提高根据问题特点灵活选择、应用策略的能力,提高分析、推理等思维能力和解决问题的能力。

3.学生加深对数学和现实生活联系的体会,进一步体会数学策略、方法在解决实际问题中的应用价值,培养应用数学策略的意识。

教学重点:

用假设、列举等策略解决问题。

教学难点:

根据问题特点选择合适的策略解决问题。

教学过程:

一、揭示课题

谈话:前两节课我们复习了解决问题的相关内容和策略,主要复习了应用从条件或问题想起、画图、列表和转化等策略解决实际问题。今天继续复习解决问题,主要应用假设、列举等策略解决问题,了解一些实际问题特点和相应的策略,提高解决问题的能力。

二、练习与实践

1.做“练习与实践”第10题。

要求学生读题,看懂表格里的意思。

提问:能说说习题的意思吗?表格里已经填写的分别表示的是什么?

引导:请你在表格里填一填,看看是怎样变化的,经过几次白子和黑子枚数相等,然后根据填表的过程想想可以怎样列式解答,自己列式计算。

学生独立填表,列式解答。

交流:你是怎样填表的?用列表的方法,可以看出这样取放多少次后,白子与黑子正好相等?你是怎样列式的?能说说怎样想的吗?

追问:解答这道题时用的什么策略?

2.做“练习与实践”第11题。

让学生说说题里告诉哪些条件,要求什么问题。

提问:把长90米的绳子分成的三段长度有什么关系?

引导:你准备怎样理清三段绳长的关系,怎样解决问题?同桌讨论一下。

交流:你准备怎样理清绳长的关系?你想怎样解决问题呢?可以有哪些假设的方法?

引导:请你选择一种假设的方法,列式解答。

交流:你怎样假设的?说说你的算式。

用不同假设的同学来说说你的方法。

提问:解答这个问题用了哪些策略?

3.做“练习与实践”第12题。

让学生观察、阅读,把情境组织成实际问题。

引导:你想怎样解答?自己想一想可以用什么策略解决,然后列式求出结果。

学生解答,教师巡视、指导,指名学生板演。

交流:大家看看这里是怎样解答的,用了什么策略?

追问:你是怎样假设的?

提问:还可以怎样假设?哪位同学用了这样的假设策略的?说说你的解答过程。

追问:假设的方法虽然不同,但都是根据哪个条件假设的?

4.用恰当的策略解决下列问题。

出示:货场要运货50吨,用2辆大货车和6辆小货车正好运完。一辆大货车的载重量比一辆小货车多3吨,大货车的载重量是多少吨?小货车呢?

提问:这道题和上面的有什么不同?

引导:想想可以用什么策略解决,自己解答。有困难的可以讨论。

学生解答,教师巡视,指名不同假设方法的学生分别板演。

交流:解答这道题能用什么策略?可以怎样假设呢?

哪一种解法假设都是小货车的?怎样思考的?

假设都是大货车时要注意什么呢?这里每一步表示的什么意思?

提问:这里用假设策略时要注意什么?

5.做“练习与实践”第13题。

(1)指名学生读题。

引导:你能按要求先在表里假设两种门票的张数,再通过调整找出答案吗?那请你自己假设、调整找出答案。

学生假设完成,教师巡视。

交流:你是怎样假设的?这样假设后怎样调整的?

还有假设不同的张数再调整的吗?

提问:调整时,每张按多少元调整的?

(2)引导:你能用假设的策略列算式解答吗?自己列式解答。

学生列式解答,教师巡视,指名不同假设策略的同学板演。

引导:两种解法,你用了哪一种,怎样想的?;另一种呢?

三、拓展提高

解决思考题。学生说明条件和问题。

引导:想一想可以用怎样的策略解决问题,用你想到的策略解决,看看能不能得出结果。如果有困难,可以在四人小组里讨论方法。学生解答,教师巡视、交流指导。

交流:你得出的结果是几比几?你是怎样解答的?

四、 总结交流

提问:这节课主要用到了哪些策略?能根据上面的练习说说哪些题适合用假设策略,哪些题适合用列举策略吗?

第11课时 式与方程整理与复习(1)

教学内容:

苏教版六下p81~82“整理与反思”、“练习与实践”第1~4题。

教学目标:

1.学生加深理解用字母表示数的意义及方法,进一步体会方程的意义及方程与等式的关系,会用等式的性质解方程,能列方程解答简单的实际问题。

2.学生进一步提高用字母的式子表示数量关系的能力,增强符号意识,体会方程思想;进一步提高分析问题和解决问题的能力。

3.学生主动参与整理和练习等学习活动,进一步感受数学与日常生活的紧密联系,体验学习成功的乐趣,发展数学学习的积极情感。

教学重点:

掌握方程的意义及解方程的方法。

教学难点:

用含有字母的式子表示数量关系。

教学过程:

一、谈话导入

谈话:这节课,我们复习“式与方程”的有关知识。(板书课题)

今天主要复习其中的字母表示数、方程的意义和解方程,并且列方程解决一些简单的实际问题。通过复习进一步掌握用字母表示数,提高解方程和列方程解决简单实际问题的能力。

二、回顾整理

1.复习用字母表示数。

(1)回顾举例。

提问:你能举出一些用字母表示数的例子吗?先独立思考,再与同桌交流。

小组交流后组织汇报,教师相应板书:

①表示计算公式,如c=2(a+b)。

②表示运算律,如a+b=b+a.

③表示数量关系,如s=vt。

提问:用字母可以表示这么多的内容,那么在用字母表示数的乘法式子里,你觉得应该提醒大家注意些什么?

(2)做“练习与实践”第1题。

学生独立在书上完成,教师巡视、指导。

集体订正,选择几题让学生说说是怎样想的。

追问:第(3)题是怎样根据a=3求周长4a和面积a各是多少的?

提问:列含有字母的式子,是根据数量之间的联系,用字母表示数列出相应的式子。求含有字母式子的值,只要把字母的值直接代入式子计算结果。

2.复习方程与等式。

(1)复习方程的概念。

下面的式子中,哪些是方程,哪些不是方程?为什么?

3x=15 x-2 x-2420x= 921

18÷3=6 16+4x=40 a+4

提问:根据刚才的判断,你能说说什么是方程吗?一个式子是方程,必须具备什么条件?方程与等式有什么关系?请你说一说,并从上面式子中找出例子说明。

根据学生回答呈现集合体。

帮助学生进一步理解:方程是含义未知数的等式;方程是等式,等式不一定是方程。

(2)复习等式的性质及解方程。

①等式的性质。

提问:等式的性质有哪些?等式的性质有什么应用?

提问:怎样应用等式的性质解下面的方程?说说你的想法。

出示:x-3=15 0.5x=1 x÷1=2 2

根据学生说明板书解方程。

指出:根据方程里已知数和未知数的关系,应用等式的性质使方程左边只剩下x,就能求出方程的解。

②做“练习与实践”第2题。

学生观察第2题。

提问:你会解这些方程吗?请你独立解方程。

学生解方程,指名板演。

集体校对,让学生说说解方程的思路。

指名说说检验的方法,选择一题板演检验过程。

提问:解方程与方程的解有什么区别?请你选择一题说说它们的区别。

3.复习列方程解决实际问题。

(1)谈话:学习方程是为了用它解决生活中的实际问题,请同学们回忆一下,列方程解决实际问题的一般步骤有哪些?你认为最关键的是哪一步?

结合学生回答,教师板书:

第一步:弄清题意,用x表示未知数。

第二步:找出等量关系。

第三步:列出方程并解方程。

第四步:检验,写答句。

(2)说出下面各题中数量之间的相等关系。

①果园有桃树和柳树共1000棵。

②红花比黄花少25朵。

③学校航模组的人数是美术组的3倍。

④花金鱼比黑金鱼的1.2倍还多8条。

让学生独立思考,指名说出等量关系,明确要根据条件表示的意思确定数量间的相等关系。

三、巩固深化

1.做“练习与实践”第3题。

学生读题后独立解答。

集体交流,学生说出解题思路,教师板书等量关系和方程,并解方程。

说明:这题的关键是根据条件找出等量关系,再根据等量关系列出方程。

2.做“练习与实践”第4题。

学生读题,理解题意。

提问:鞋的码数与厘米数之间有怎样的关系?

学生独立完成,把书上的表填写完整。

集体交流,让学生说说是怎样思考的。

追问:求b的码数和求a的厘米数有什么不同?

四、课堂小结

这节课我们复习了哪些知识?你有什么收获?

第12课时 式与方程整理与复习(2)

教学内容:

苏教版六下p82“练习与实践”第5~9题。

教学目标:

1.学生进一步掌握列方程解决实际问题的步骤和思路,能根据题意说呢数量间的相等关系,正确地列方程解答相关实际问题。

2.学生在分析问题、解决问题的活动中,进一步提高分析数量关系和用方程表示数量关系的能力,体会,模型思想,积累解决问题的经验,发展数学思考。

3.学生进一步体会列方程解决实际问题的意义和价值,感受数学与现实生活的联系,培养应用意识;在应用知识的过程中体验成功的乐趣,激发数学学习的兴趣。

教学重点:

列方程解决实际问题。

教学难点:

分析和理解实际问题的数量关系。

教学过程:

一、揭示课题

谈话:这节课,我们继续复习方程的相关知识,主要复习列方程解决实际问题。(板书课题) 通过复习,进一步掌握列方程解决实际问题的方法,提高用方程解决实际问题的能力。

二、基本练习

1.解答下列问题。

引导:上节课已经复习过列方程解决简单的实际问题,现在再看一道题,大家独立列方程解答,并想想按怎样的步骤解答的,关键是哪一步。

出示:甲、乙两地间的公路长240米,一辆汽车从甲地开往乙地,行驶了1.5小时后离乙地还有75千米。这辆汽车的速度是多少千米╱时?

学生独立读题并列方程解答,指名板演。

交流:这题是怎样解答的?说说是怎样想的。

方程是根据怎样的等量关系列出来的?

还能找出怎样的等量关系?根据这个等量关系可以怎样列方程?

2.把下列各题中数量间的相等关系填写完整,并列出方程。

(1)学校书法组有42人,比音乐组的2倍少4人。音乐组有多少人?

○=书法组人数

○=4人

(2)学校书法组和音乐组一共42人,书法组人数是音乐组的2倍。书法组和音乐组各有多少人?书法组和音乐组一共的人数

学生独立读题,完成数量关系式,设未知数并列出方程。

指名学生说出等量关系,设未知数为x,口头列出方程;根据交流呈现等量关系式和相应的方程。追问:方程是根据什么列出的?

三、应用练习

1.做“练习与实践”第5题。

学生读题,理解题意。

学生独立解答,教师巡视,指名列不同方程的学生板演。

集体交流,让学生说说这是哪一类实际问题,不同方程相应的等量关系各是怎样的,检查列方程解题过程。

2.做“练习与实践”第6题。

学生读题后独立解答。

集体交流,让学生说说解答这题的数量关系式和方程,教师板书。

3.出示:水果店运来苹果的千克数是橘子的3倍,一共480千克。运来橘子多少千克?

引导:同桌相互说说数量之间的相等关系,应该怎样列方程。

提问:这里数量间有怎样的相等关系?方程怎样列的?

4.做“练习与实践”第7题。

学生读题后独立解答,指名板演。

集体交流、评议,让学生说说思考的过程,应该怎样找数量间的相等关系。

5.做“练习与实践”第8题。

指名学生读题,说说题中的条件和问题。

提问:你能说说“甲种衬衫按四折销售”和“乙种衬衣按五折销售”的意思吗?

学生独立解答,教师巡视、指导。

集体交流,提问:这题中单位“1”的量是什么?数量关系式应该怎样列?

引导:比较第7、8题,为什么都用方程解答?列方程时怎样表示题里两个未知数量的?

四、拓展练习

出示“练习与实践”第9题,引导学生了解题意。

(1)出示数表和3个方框。

①让学生按横框直接在书上的数表里框4个数,同桌相互说说自己框的4个数之间有什么关系。要求再框几次,验证自己发现的关系,看看能发现什么规律。

提问:这样每次框出的4个数之间有什么关系?

如果用a表示框里的第一个数,后面3个数分别怎样表示?自己想一想、填一填。

交流:你是怎样填的?说说你的想法和填的结果。

引导:这4个数的和可以怎样表示?

学生计算,教师巡视。

集体交流,教师相机板书:4a+6。

②引导:请每人分别用另两个长方形框连续框几次,看看又能发现什么规律,在下面每个相应的框里表示其余3个数,看看和可以怎样表示。如果有困难,可以同桌商量完成。

学生活动,教师巡视、指导。

集体交流,让学生说说填写的结果及思考的过程,呈现并板书交流的结果。

(2)框数、猜数游戏。

出示第(2)题,了解要求。

引导:框出4个数算出它们的和,能不能按刚才表示4个数和的式子,说出4个数各是多少呢?谁愿意来报出一组4个数的和,大家想一想这4个数分别是多少?

指名一人报出和,其余学生说出4个数,交流结果和思考方法,引导学生了解可以根据表示和的式子试着列方程,看能根据哪个式子列出方程求出结果。

要求:现在同桌两人一组,一人框4个数说出和,另一人说出这4个数;两人交换进行游戏。学生活动,教师巡视、指导。

提问:根据4个数的和说出4个数各是多少,其实是用到了什么知识?

五、 课堂总结

提问:这节课复习了什么内容?你又有哪些新的认识和收获?还有什么不懂的问题?

第13课时 比和比例整理与复习

教学内容:

苏教版六下p83~84“整理与反思”、“练习与实践”第1~6题。

教学目标:

1.学生进一步巩固比和比例的意义、性质,加深认识比和分数、除法之间的联系;进一步认识比例尺,巩固解比例的方法,能应用比和比例的知识解决有关实际问题。

2.学生在回顾整理与练习应用的过程中,进一步认识知识的内在联系,加深对数量比较的认识,提高分析、推理、判断等思维能力,增强运用比和比例知识解决实际问题的能力。

3.学生在复习过程中感受数学知识系统性的特点,体验数学与生活实际的密切联系,培养学生的数学应用意识,激发学生学习数学的自信心。

教学重点:

比和比例的意义、性质及应用。

教学难点:

正确解答有关比和比例的问题。

教学过程:

一、揭示课题

谈话:这节课我们要对比和比例的相关知识进行整理和复习。在整理与复习过程中,同学们要主动回顾、整理比和比例的知识,系统掌握比和比例的知识及应用,进一步增强运用比和比例知识解决实际问题的能力。

二、知识梳理

1.唤醒记忆。

提问:请同学们回忆一下,我们学过了比和比例的哪些内容?

学生自由回答,教师相应板书。

2.复习比的知识。

(1)出示问题:

①什么是比?什么是比的基本性质?用比的知识可以解决哪些实际问题?

②比和分数、除法有什么联系?

③什么叫求比值?什么叫化简比?请你举例说明。

学生在小组里交流,互相补充、修正,教师巡视、指导。

(2)全班交流。

①什么是比?什么是比的基本性质?用比的知识可以解决哪些实际问题?

结合交流,教师相应板书。

②引导:比和分数、除法有什么联系呢?请你填写课本上的式子,相互说一说它们之间的联系和区别。

集体交流,教师相应板书。

提问:能根据这个式子说说比和分数、除法之间的联系吗?它们有什么区别?

提问:比的基本性质是什么?比的基本性质与分数的基本性质、商不变的规律有什么联系? 交流小结比的基本性质,依据相互间的联系说明比的基本性质与商不变的规律、分数的基本性质本质上是相同的。

③什么叫求比值?什么叫化简比?求比值和化简比的依据和结果有什么不同?

结合交流,教师相应板书。

(3)做“练习与实践”第1题。

学生独立完成,填写在书上。

集体交流,让学生说说是怎样想的。

3.复习比例的知识。

(1)出示问题:

①什么是比例?什么是比例的基本性质?写出一个比例说说自己的认识。

②什么是解比例?怎样应用比例的基本性质解比例?举例说一说。

③什么是比例尺?根据比例尺求图上距离或实际距离的方法是怎样的?

小组讨论、交流。

(2)按出示的问题全班交流,结合学生回答,相应板书。

三、组织练习

1.做“练习与实践”第2题。

出示第(1)题,学生根据要求先量出每副图片的长和宽,并写出长和宽的比。

集体交流,有错的同学订正。

提问:估计哪两个比能组成比例?你是怎样估计的?

让学生算一算,写出比例。

交流写出的比例,说明能组成比例的理由,并与估计结果比较。

2.做“练习与实践”第4题。

(1)出示统计表。

引导:你理解表中每个百分数的含义吗?选择几个百分数,在小组里相互说说它的含义。 小组交流后指名汇报,选择2至3个百分数说说含义。

(2)出示问题(1)。

指名学生口答,并让学生说说思考的过程。

(3)提问:从表中还能获得哪些信息?你还能提出哪些问题?

学生小组讨论后集体交流。

3.做“练习与实践”第5题。

(1)学生读题,理解题意。

让学生自己写出比,并求出每种地砖的铺地面积。

交流:两种地砖面积的比是怎样的?说说你的方法。

(2)提问:求两种地砖铺地面积是怎样的问题?你是怎样解答的?

结合学生回答,教师板书算式、得数,并让学生说说每一步求的什么?

提问:按比例分配实际问题有什么特点?解答时通常应该怎样想?

4.做“练习与实践”第6题。

指名学生读题,了解题意。

要求学生独立操作、计算,教师巡视、指导。

集体交流,让学生说说是用怎样的方程计算的,注意理解不同的思路、方法。

追问:这里不同的解题方法各是怎样想的?

四、课堂总结

提问:今天这节课我们复习了哪些内容?在整理与复习的过程中,你又有了哪些收获和体会?

第14课时正比例和反比例整理与复习

教学内容:

苏教版六下p84~85 “练习与实践”第7~10题。

教学目标:

1.学生进一步认识成正比例和反比例的量,掌握两种量是否成正比例或反比例的思考方法,能正确判断两种量成不成比例,成什么比例。

2.学生通过判断两种相关联的量是否成正比例或反比例,加深理解成正比例和反比例关系的特点,体会数形结合和函数思想,提高分析、判断和初步演绎推理能力。

3.学生进一步体会生活中常见的相关联的变换关系,感受比和比例的应用价值,体会不同领域数学内容之间的联系,激发学习数学的积极性。

教学重点:

正确判断两种相关联量的正比例和反比例关系。

教学难点:

有条理地说明判断正、反比例的理由。

教学过程:

一、揭示课题

谈话:上节课我们复习了比和比例的相关知识,这节课我们一起复习正比例和反比例。(板书课题)

通过复习,进一步认识正比例和反比例的意义、正比例图像,了解正、反比例的区别和联系,掌握判断两种量是否成正比例或者反比例的方法,能正确地进行判断。

二、回顾梳理

1.提问:请同学们回忆一下,怎样的两种量是成正比例的量?怎样的两种量是成反比例的量? 根据学生回答板书。

提问:你能举一些生活中成正比例或反比例的例子吗?在小组里相互说一说。

全班交流,让学生举例说一说。

2.做“练习与实践”第7题。

提问:每张表里有哪两种量?每张表里的两种量是成正比例、反比例,还是不成比例?先独立分析每张表的数量变化过程,再把你的想法与同桌交流。

集体交流,引导学生判断并说明理由。

提问:我们是怎样判断两种量成不成比例,成比例的是成正比例还是反比例的?

3.做“练习与实践”第8题。

学生理解题意后独立思考,判断结论。

指名学生说说各题中两种量是否成比例,成比例的是成正比例还是成反比例,并说明理由,结合交流板书相应的关系式。

三、综合练习

1.做“练习与实践”第9题。

(1)学生练习。

出示第9题,让学生说说图中的信息。

要求学生独立思考和完成第(1)~(3)题,再和同桌相互说一说。

(2)学生交流。

①提问:这辆汽车在高速公路上行驶的路程和耗油量成正比例吗?为什么?

让学生判断并说出判断理由。

②让学生说说问题(2)判断的方法。

结合图像说明:可以先在横轴上找到表示75千米在图像上的对应点,再通过图像上的对应点找出和确定耗油升数。

③出示学生根据第(3)题画出的图像。

提问:怎样描出路程和耗油量对应的点画出图像的?

2.做“练习与实践”第10题。

出示表格,让学生说说表中的信息。

(1)出示问题(1),提出要求:

①画一画:根据表中数据描点连线。

②议一议:哪一杯中纯酒精与蒸馏水体积的比和其他几杯不一样?在小组里交流你的想法和理由。

学生独立操作后小组讨论。

集体交流,展示学生画出的图像,说说是怎样画的。

让学生判断结果,并说出理由。

(2)出示问题(2)(3),学生独立解答。

集体交流,让学生说说解答结果及思考方法。

四、课题总结

提问:通过这节课的复习,你有什么收获?还有什么困惑吗?

六年级数学鸽巢问题教案篇4

一、教材分析:

本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。和以往的义务教育教材相比,这部分内容是新增的内容。本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。

在数学问题中,有一类与“存在性”有关的问题。在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。这类问题依据的理论我们称之为“抽屉原理”。“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。

“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。

二、三维目标:

1、知识与技能:

引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。

2、过程与方法:

(1)经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等

活动的学习方法,渗透数形结合的思想。

(2)学会与人合作,并能与人交流思维过程和结果。

3、情感态度与价值观:

(1)积极参与探索活动,体验数学活动充满着探索与创造。

(2)体会数学与生活的紧密联系,感受数学在实际生活中的作用,体

验学数学、用数学的乐趣。

(3)通过“鸽巢原理”的灵活应用,感受数学的魅力。

(4)理解知识的产生过程,受到历史唯物注意的教育。

三、教学重点:

应用“鸽巢原理”解决实际问题,引导学会把具体问题转化成“鸽巢问题。

四、教学难点:

理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。

五、教学措施:

1、让学生经历“数学证明”的过程。可以鼓励、引导学生借助学具、实物操作或画草图的方式进行“说理”。通过“说理”的方式理解“鸽巢原理”的过程是一种数学证明的雏形。通过这样的方式,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。

2、有意识地培养学生的“模型”思想。当我们面对一个具体的问题时,能否将这个具体问题和“鸽巢原理”联系起来,能否找到该问题中的具体情境与“鸽巢原理”的“一般化模型”之间的内在关系,找出该问题中什么是“待分的东西”,什么是“鸽巢”,是解决问题的关键。教学时,要引导学生先判断某个问题是否属于用“鸽巢原理”可以解决的范畴;再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。这个过程是学生经历将具体问题“数学化”的过程,从纷繁复杂的现实素材中找出最本质的数学模型,是学生数学思维和能力的重要体现。

3、要适当把握教学要求。“鸽巢原理”本身或许并不复杂,但它的应用广泛且灵活多变。因此,用“鸽巢原理”解决实际问题时,经常会遇到一些困难。例如,有时要找到实际问题与“鸽巢原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“鸽巢”,要用几个“鸽巢”。因此,教学时,不必过于要求学生“说理”的严密性,只要能结合具体问题,把大致意思说出来就可以了,鼓励学生借助实物操作等直观方式进行猜测、验证。

六、课时安排:3课时

鸽巢问题-------------------1课时

“鸽巢问题”的具体应用------1课时

练习课---------------------1课时

六年级数学鸽巢问题教案篇5

教学目标:

1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

2. 通过操作发展学生的推理能力,形成比较抽象的数学思维。

教学重点:

经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

教学难点:

运用 “鸽巢问题”,解决一些简单的实际问题。

教具准备:

每组都有相应数量的杯子、小球、扑克牌、多媒体课件。

教学过程:

一、游戏引入:

师:我们今天来做个游戏,游戏要求,把全班分成若干小组,每小组的组长手中有3个小球和2个杯子,要求把所有小球全都放进杯子里。同学们看看老师猜的对不对。

请三位小组长上台来猜另外三小组同学小球是怎么放的。生讲师板书。

师小结:一定有一个杯子里至少有两个小球。

同学们你们想不想知道为什么老师会知道呢?板书课题:鸽巢问题

二、探究原理:

1、动手摆一摆,感受原理。

(1)探究物体个数比抽屉多1的情况。

例1、现在要把4支铅笔放进3个文具盒里,会有几种不同的放法?请大家摆一摆,边摆边记录。

全班分小组摆一摆。

各组长边摆边记录。教师板书,全班同学报数,一起记录。

联系小球放进杯子的游戏,引导学生讲出:不管怎么放,总有一个杯子至少放有2根小棒。

师:总有一个杯子至少有……

师:a、总有是什么意思?

师:b、“至少”又是什么意思? “至少squo;的意思是2根或2根以上。

师:如此往下想,7根小棒放在6个杯子里,

10根木棒放进9个杯子里

100根木棒放进99个杯子里会有怎么样的结论?

要证明这个结论能想出一种简便的方法来吗?大家讨论讨论。

学生讨论。

师:想出什么办法?谁来说说。

刚才这样分是怎样分?为什么要用平均分,才能证明这个结论?

(边摆边说。如果用算式怎样表示?板书(4÷3=1……1)

学生得出:只要小棒数量比杯子数量多1都有这样的结论。

2、探究商不是1的情况。

讨论7本书放进3个抽屉里,想知道结论吗?还要摆吗?

那8本书进3个抽屉里。

10本书放进3个抽屉里又是怎样?你发现了什么?

我发现 7÷3=2……1

8÷3=2……2

10÷3=3……1

板书:至少数=商+1。

小结:我们今天探究的原理就是数学中有名的鸽巢原理。

三、本课总结:

鸽子÷鸽巢 = 商…… 余数

至少数 = 商+1

四、用今天知识来解决生活中的一些实际问题。

1、做一做

2、玩扑克的游戏。

五、板书:略

六年级数学鸽巢问题教案篇6

?学情分析】

抽屉原理是学生从未接触过的新知识,难以理解抽屉原理的真正含义,发现有相当多的学生他们自己提前先学了,在具体分的过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。有时要找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“抽屉”,要用几个“抽屉”。

1.年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主体性。

2.思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。

?教学方法】

1.借助学具,学生自主动手操作、分析、推理、发现、归纳、总结原理。

2. 适时引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解“抽屉问题”的“一般化模型”。

3.引导学生构建解决抽屉原理类问题的模式:明确“待分的物体”arr;哪是“抽屉”arr; 平均分 arr;商+1

4.完善评价体系,进行小组捆绑,激励学生全员参与,体验成功的乐趣。

5.师生课前准备:①学生:每组5根小棒、4个杯子;课件②学生记录自己是哪一个月出生的。③教师准备1副牌。

?教学目标】

知识目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

能力目标:经历抽屉原理的探究过程,通过实践操作发展学生的类推能力,形

成比较抽象的数学思维。

情感目标:通过“抽屉原理”的灵活应用感受到数学的魅力。

?教学重点】经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。

?教学难点】理解抽屉原理,并对一些简单实际问题加以“模型化”。

?教具、学具准备】学生:每组5根小棒、4个杯子;课件

?教学过程】

一、联系生活,激趣导入

用一副牌展示“抽屉原理”。 (师生合作完成魔术)

师:同学们喜欢魔术吗?今天老师客串一下魔术表演,想见识见识吗?请全班同当老师的助手,每一个小组有一副牌,大家知道一副扑克牌有54张去掉两张王牌,剩52张,现在用它变一个魔术。这个魔术的名字叫“猜花色”。在组长的组织下每人随意抽五张牌先反扣在桌上。我猜,每位同学的手中至少有两张花色是相同的。是这样的吗?见证奇迹的时刻到了。请翻牌看看,老师猜得准么? 生:猜对了。

生:猜对了,给点掌声吧。老师为什么猜的那么准,想知道吗?其实这里面蕴藏着一个非常有趣的数学原理----抽屉原理(板书课题)相信你们认真学习后,会明白的。

(设计意图: 老师通过一个魔术展示了在生活里 “抽屉原理”问题中的一种,勾起了学生对这个魔术很好奇心,为原本枯燥的数学课注入了活力。)

师:看看这节课的学习目标。(指名读一读)

(设计意图: 建立明确的目标,就会引起师生注意的集中性和指向性,引起对某类知识,某种能力的强烈注意。就能在最短的时间,最省力地完成“三个维度”的目标,最有效的提高教学质量。)

二、动手实验、 探究新知

师:为研究这个原理,老师为大家准备了什么?

生:小棒和杯子(板书:小棒、杯子)

师:那我们今天就用小棒和杯子做几个有趣的数学实验来研究这个原理。

(一)第一步:研究4根小棒放入3个杯子中的现象。

1、请看大屏幕:

师:把4根小棒放进3个杯子里,请小组的同学摆摆看,在动手之前请看活动要求:

①4人为一组摆一摆,要求将小棒全部放进去,允许某个杯子空着。②边摆边记录下来,(记录时:可以用1 表示小棒,用 0 表示杯子(画一画)看看一共有几种摆法?

师补充:每个组要认真记录不同摆法。希望每个小组分工合作愉快,开始

2.汇报展示

要求学生边摆边说,老师同时在黑板上板书草图。可能会出现以下几种放法:

师:大部分学生都摆完了,谁来说说,你们是怎么摆的?

学习小组派代表到台前展示成果。要求学生边摆边说,老师同时在黑板上板书草图。可能会出现以下几种放法:

4 0 03 1 0

2 2 02 1 1

(引导学生明确虽然摆放的顺序不一样,但是同一种放法)

师:老师欣赏这组同学的操作步骤,按一定顺序,可以做到不重复,不遗漏。

师:还有别的放法吗?

生:没有了。

(3)引导观察,得出结论。

引导学生观察4种方法,从而得出:总有一个杯子里面至少有2根小棒。

师:是的,这4种放法,不管怎么放,你有什么发现?)

1组:(可能会出现不同发现)

2组:我们发现不管怎么放,总会有一个小杯子里面至少有2根小棒。强调至少!总有

师:说啥?再说一遍。

生:

师:还有谁发现了什么?

生:

(设计意图:这个环节鼓励每个小组都说出自己的看法,因为学生思维能力的不同,得出的结论也就不同。只有通过多种思维的碰撞,学生的逻辑思维能力、解决问题的能力才能提高,对抽屉原理的认识才会更加深刻。)

师:再次观察四种方法,哪种方法能直接得到这个结论。

这种分法,实际就是先怎么分的?(引导平均分)

师:关于平均分有没有问题?我有一个问题,为什么用平均分这一种方法,就能得出总有一个杯子里的至少有2根小棒这个结论。

(二)第二步:研究5根小棒放入4个杯子中的现象。

1、课件出示:5根小棒放进4个杯子里你感觉会出现什么情况。

师:再往下继续研究,5根小棒放在4个小杯子里你感觉会出现什么情况,

生猜测:5根小棒放在4个小杯子,不管怎么放,肯定有一个杯子里至少有2根小棒。

师:对不对需要实验验证,我们还要像刚才那样一一把所有摆法都列举出来吗?用什么方法操作验证这个结论对错就可以了。

生:用平均分的方法就可以了。

师:咱们试试看,小组合作交流,用这种平均分的方法操作验证,并像黑板上那样记录在学案里。

2、展示摆法,引导观察发现:

师:哪一个小组愿意展示分享一下?

生:5根,每个小杯子放一根,剩下的一根放在其中的一个小杯子。(实际演示一下)

师:谁和他的分法一样的,这种分法,实际就是先怎么分的?(板书:平均分)

课件演示

师:,既然用平均分的方法就可以解决这个问题,会用算式表示这种方法吗?

生:5÷4=1??1

师:能解释算式里每个数的意义吗?

生:5表示小棒数,4表示杯子是,商1表示平均每个杯子放进1根小棒,余数1表示还剩1根小棒。

师小结:要想发现存在着“总有一个杯子里一定至少有2根”,先平均分,余下1根,不管放在那个杯子里,一定会出现“总有一个杯子里一定至少有2根”。 )

3、学以致用---照这样的思路,继续往前走:

课件出示:把7根小棒放进6个小杯子里,总有一个杯子里至少有( )根,。

100根小棒放进99个小杯子里,总有一个杯子里至少有( )

根。

师:这么大的数字,同学们这么快就得出了结论,你是不是发现了什么规律了?(小棒的数量与杯子的数量有什么关系?))还要操作验证吗?说说你的想法。

学生独立解决以上问题,在展示汇报时学生要说明白解决问题的方法是什么。

4、引导学生知识点小结:

师:小棒数比杯子数多1,总有一个盒子至少放进的小棒数怎么算,你用谁加上谁就是我们想要结果?

六年级数学鸽巢问题教案篇7

教学目标

1.在操作、观察、比较的过程中初步了解抽屉原理,并运用抽屉原理的知识解决简单的实际问题。

重点难点 经历抽屉原理的探究过程,并对抽屉原理的问题模式化

学生笔记(教师点拨) 学 案 内 容

一、知识回顾:(2分钟)

二、学生自学:(15分钟)

(1)自学例1

把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?

(1) 学生思考各种放法。

(2) 第一种放法: 第二种放法:

第三种放法: 第四种放法:

教学过程:

5÷2=2……1 (至少放3本)

7÷2=3……1 (至少放4本)

9÷2=4……1 (至少放5本)

1、提出问题。

不管怎么放,总有一个文具盒里至少放进( )铅笔。为什么?

如果每个文具盒只放( )铅笔,最多放( )枝,剩下()枝还要放进其中的一个文具盒,所以至少有()铅笔放进同一个文具盒。

(1) 说一说你有什么体会。

二自学例2

1、把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?

2、摆一摆,有几种放法。

不难得出,不管怎么放总有一个抽屉至少放进( )本书。

3、说一说你的思维过程。

如果每个抽屉放( )本书,共放了( )本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

如果一共有7本书会怎样呢?9本呢?

4. 你能用算式表示以上过程吗?你有什么发现?

总结:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

三、小组合作交流(8分钟)

四、教师评价释疑。(10分钟)

五、当堂检测(5分钟)

1. 做一做。

(1)7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

(2) 说出想法。

如果每个鸽舍只飞进( )鸽子,最多飞回( )鸽子,剩下()鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。

2. 做一做

8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

想:每个鸽舍飞进( )鸽子,共飞进( )鸽子。剩下( )鸽子还要飞进其中的1个或2个鸽舍,所以,至少有( )鸽子要飞进同一个鸽舍里。

六年级数学鸽巢问题教案篇8

教学目标:

1、知识与技能:初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题或解释相关的现象。

2、过程与方法:通过操作、观察、比较、说理等数学活动,使学生经历鸽巢原理的形成过程,体会和掌握逻辑推理思想和模型思想。

3、情感 态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学习数学的兴趣。

教学重点:经历“鸽巢原理”的探究过程,理解鸽巢原理。

教学难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

教学准备:多媒体课件、铅笔、纸杯、合作探究作业纸。

教学过程:

一、 唤起与生成

1、谈话:同学们,你们喜欢魔术吗?今天,黄老师给大家表演一个小魔术。一副牌,取出大小王,还剩52张牌,请5个同学每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?来,试试看。

2、验证: 抽取,统计。是不是凑巧了,再来一次。表演成功!

3、至少2张是什么意思?(也就是最少2张,最起码2张,反过来,同一花色的可能有2张,也可能是3张、4张、5张...,一句话概括就是至少2张)。

确定是哪个花色了吗 ?(没有)反正总有一个花色,所以,这个数据不管是在哪个花色出现都证明表演是成功的。

4、设疑:你们想知道这是为什么吗?其实这里面蕴藏着一个非常有趣的数学原理,这节课让我们一起去发现!

二、探究与解决

(一)、小组探究:4放3的简单鸽巢问题

1、出 示:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

2、审 题:

①读题。

②从题目上你知道了什么?证明什么?

(我知道了把4支铅笔放进3个笔筒中,证明不管怎么放,总有一个笔筒里至少有2支铅笔。)

③你怎样理解“不管怎么放”、“总有” 、“至少”的意思?

“不管怎么放”:就是随便放、任意放。

“总有”: 就是一定有,不确定是哪个笔筒,这个笔筒没有那个笔筒会有。

“至少”: 就是最少,最起码。至少有2支,就是最少有2支,不能少于2支。也可能是3支、4支、甚至5支。

3、探 究:

①谈 话:看来大家已经理解题目的意思了,眼见为实,就让我们亲自动手摆一摆、放一放,看看有哪几种放法?

②活 动:小组活动,四人小组。

听要求!

活动要求:每个小组都有笔筒和笔,请四个人中面对面的两人一人扶杯子一人放铅笔,另外两人一人口述一人记录,让我们齐心协力,摆出所有情况后,对照题目,看有什么发现。

听明白了吗?开始!

3、反 馈:汇报结果

同学们办法真多,有用画图法,有用数的分解来表示,都很清晰。谁来汇报一下你们的成果?

可以在第一个笔筒中放4支铅笔,其他两个空着。这种放法可以说成(4,0,0),(3,1,0),(2,2,0),(2,1,1)(课件逐一出示)

追 问:谁还有疑问或补充?

预设:说一说你比他多了哪一种放法?

(2,1,1)和(1,1,2)是一种方法吗?为什么?)

只是位置不同,方法相同

5、验证:观察这4种摆法,凭什么说“总有一个笔筒中至少有2支铅笔”?

(1)逐一验证:

第一种摆法(4,0,0),是不是总有一个笔筒至少2支,哪个?放的最多的笔筒里有4支,比2支多也可以吗?

符合总有一个笔筒里至少有2支铅笔。

第二种摆法(3,1,0),符合。哪个?放的最多的笔筒里有3支,符合总有一个笔筒里至少有2支铅笔。

第三种摆法(2,2,0),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

第四种摆法(2,1,1),放的最多的笔筒里有2支, 符合总有一个笔筒里至少有2支铅笔。

符合条件的那个笔筒在三个笔筒中都是最多的。

(2)设疑:我有一个疑问,第一种摆法(4,0,0)放的最多的笔筒里,放有4支,可以说总有一个笔筒至少有4 支铅笔吗?说成3支也不行吗?

(3)小结:哦,原来是这样,要考虑所有摆法,然后在所有摆法中,圈出每一种摆法中最多的,再从最多的里面找到至少数,就能得出这个结论。

所以,把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

(二)自主探究:5放4的简单鸽巢原理

1、过 渡:依此推想下去

2、出 示:把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有( )支铅笔。

3、猜 想:同学们猜猜看,至少数是几支?(你说、你说)

4、验 证:你们的猜测对吗?让我们来验证一下。

活动要求:

(1)思考有几种摆法?记录下来。

(2)观察每一种摆法,能不能从中找出答案。有困难的可以同桌合作。

好,开始。(教师参与其中)。

5、汇 报:把5支铅笔放进4个笔筒中,共有6种摆法

分别是:5000 、4100、 3200、 3110 、2200、2111

(课件同步播放)

预设:我圈出了每种摆法中,放铅笔最多的那个笔筒,然后发现,放铅笔最多的的笔筒里面至少放有2支铅笔。

6、订 正:有补充的吗?噢,我们来看,这6种摆法,把每种方法里放的(停顿)最多的铅笔圈出来了,分别是5支、4支、3支、2支,从中找到至少数是2支。

7、小 结:恭喜答对的同学!同学们可真是厉害!请看,我们研究了这样的两个问题:

①把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。会讲为什么。

②把5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?会求至少数。

不管是对结论的证明还是求解至少数,我们都采用一一列举的方法,罗列出所有摆法,再通过观察,得出结论。

(三)、探究鸽巢原理算式

1、谈 话:哎,如果这里有 100支铅笔放进30个笔筒,不管怎么放,总有一个笔筒至少有几支铅笔?

还是让求至少数,还用一一列举的方法来研究,你觉得怎么样?

(好麻烦,是啊, 想想都觉得麻烦!)

2、追 问:数学是一门简洁的科学,那就请同学们想一想,除了通过操作一一列举出来,有没有什么方法能一下子找到结果呢?

其实,我们刚才已经和那一种方法见过面,以4放3为例,请同学们认真观察每一种摆法,分别找一找,哪一种摆法最能说明:总有一个笔筒里至少放有2支铅笔呢?

3、平均分:为什么这样分呢?

生:我是这样想的,先假设每个笔筒中放1支,这样还有1支,这是无论放到哪个笔筒,那个笔筒中就有2支了,所以我认为是对的。(课件演示)

师:你为什么要先在每个笔筒中放1支呢?

生:因为总共只有4支,平均分,每个笔筒只能分到1支。

师:为什么一开始就要去平均分呢?

生:平均分,就可以使每个笔筒中的笔尽可能少一点。也就有可能找到和题目意思不一样的情况。

师:我明白了,但这样能证明总有一个笔筒中肯定会有2 支笔,怎么就证明了至少有2支呢?

生:平均分已经使每个笔筒中的笔尽可能的少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

师:看来,平均分是保证“至少”数的关键。

4、列式:

①你能用算式表示吗?

4÷3=1……1?? 1+1=2

②讲讲算式含义。

a、指名讲:假设把4支铅笔平均放进3个笔筒中,每个笔筒放1支,剩下的1支就要放进其中的一个笔筒,1+1=2,所以总有一个笔筒至少有2支铅笔。

b、真棒!讲给你的同桌听。

5、运 用:把5支铅笔放进4个笔筒不管怎么放,总有一个笔筒至少有几支铅笔?? 请用算式表示出来。

5÷4=1……1?? 1+1=2

说说算式的意思。

a、同桌齐说。

b、谁来说一说?

师:我们会用除法算式表示平均分的过程,这种方法更为快捷、简明。

(四)探究稍复杂的鸽巢问题

1、加深感悟:我们继续研究这样的问题,边计算边思考:这样的题目有什么特点?结论中的至少数是怎样得到的?

2、题组(开火车,口答结果并口述算式)

(1)6支铅笔放进5个笔筒里,总有一个笔筒里面至少有()支铅笔

(2)7支铅笔放进5个笔筒里,总有一个笔筒里面至少有()支铅笔

7÷5=1…… 2?? 1+2=3?

7÷5=1…… 2?? 1+1=2

出现了两种答案,究竟那种正确?同桌商量商量。不行我再救场(学生讨论)

你认为哪种结果正确?为什么?

质 疑:为什么第二次还要平均分?(保证“至少”)

把铅笔平均分才是解决问题的关键啊。

(3)把笔的数量进一步增加:

8支铅笔放5个笔筒里,至少数是多少?

8÷5=1……3?? 1+1=2

(4)9支铅笔放5个笔筒里,至少数是多少?

9÷5=1……4?? 1+1=2

(5)好,再增加一支铅笔?至少数是多少?

还用加吗?为什么?? 10÷5=2?? 正好分完, 至少数是商

(6)好再增加一支铅笔,,你来说

11÷5=2……1?? 2+1=3?? 3个

①你来说说现在至少数为什么变成3个了?(因为商变了,所以至少数变成了3.)

②那同学们再想想,铅笔的支数到多少支时,至少数还是3?

③铅笔的支数到多少支的时候,至少数就变成了4了呢?

(7)把28支铅笔放进5个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。28÷5=5……3?? 5+1=6??

(8)算的这么快,你一定有什么窍门?(比比至少数和商)

(9) 把m支铅笔放进n个笔筒里,总有一个笔筒里面至少放进(? )支铅笔。(商+1)

3、观察算式,同桌讨论,发现规律。

铅笔数÷笔筒数=商……余数” “至少数=商+1”

你和他们的发现相同吗?出示:商+1

4、质疑:和余数有没有关系?

(明确:与余数无关,因为不管余多少,都要再平均分,所以就用“商+1”)

(五)归纳概括鸽巢原理

1、解答:那现在会求100支铅笔放进30个笔筒中的至少数了吗?

100÷30=3…… 10?? 3+1=4 至少数是4个

(因为把100支铅笔平均放进30个笔筒中,每个笔筒屉放3支,剩下的10支在平均再放进其中10个笔筒中。所以,不管怎么放,总有一个笔筒里至少放进4支铅笔。)

2、推广:

刚才我们研究了铅笔放入笔筒的问题,其他还有很多问题和它有相同之处。请看:

(1)书本放进抽屉

把8本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?

8÷3=2……2? 2+1=3

(因为把8本书平均放进3个抽屉,每个抽屉放2本,剩下的2本就要放进其中的2个抽屉。所以,不管怎么放,总有一个抽屉里至少放进3本书。)

(2)鸽子飞进鸽巢

11只鸽子飞进4个鸽笼,至少有几只鸽子飞进同一只鸽笼?

11÷4=2……3? 2+1=3

答:至少有 3只鸽子飞进同一只鸽笼。

(3)车辆过高速路收费口(图)

(4)抢凳子

书、鸽子、同学就相当于铅笔,称为要放的物体,抽屉、鸽笼、凳子就相当于笔筒,统称为抽屉。物体数量大于抽屉数量,类似的问题我们都可以用这种方法解答。

3、建立模型:鸽巢原理:

同学们发现的这个原理和一位数学家发现的一模一样,让我们追溯到150多年以前:

知识链接:(课件)最早指出这个数学原理的,是十九世纪的德国数学家“狄利克雷”,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄利克雷原理”。以上这些问题有相同之处,其实鸽巢、抽屉就相当于笔筒,鸽子、书就相当于铅笔。人们对鸽子飞回鸽巢这个事例记忆犹新,所以像这样的数学问题就叫做鸽巢问题或抽屉问题,它被广泛地应用于现实生活中。运用这一规律能解决许多有趣的问题,并且常常能得到一些令人惊异的结果。

揭示课题:这是我们今天学习的第五单元数学广角——鸽巢问题,它们里面蕴含的这种数学原理,我们就叫做鸽巢原理或抽屉原理。

5、小结:分析这类问题时,要想清楚谁是鸽子,谁是鸽巢?

有信心用我们发现的原理继续接受挑战吗?

3、巩固与应用

那我们回头看看课前小魔术,你明白它的秘密了吗?

1、 揭秘魔术:一副牌,取出大小王,还剩52张牌,你们5 人每人随意抽一张,我知道至少有2张牌是同花色的。

答:因为把5张牌,平均分在4个花色里,每个花色有1张,剩下的1张无论是什么花色,总有一个花色至少是2张。

正确应用鸽巢原理是表演成功的秘密武器!

2、飞镖运动

同学们玩过投飞镖吗?飞镖运动是一种集竞技、健身及娱乐于一体的绅士运动。

课件:张叔叔参加飞镖运动比赛,投了5镖,成绩是41环,张叔叔至少有一镖不低于(? )环。

在练习本上算一算,讲给你的同桌听听。

谁来给大家说说你是怎么想的?(5相当于鸽巢,41相当于鸽子。把......)

41÷5=8……1? 8+1=9

在我们同学身上也有鸽巢问题,让我们先了解一下六年级的情况。

3、我们六年级共有367名学生,其中六(2班)有49名学生。

(1)六年级里至少有两人的生日是同一天。

(2)六(2)班中至少有5人的生日是在同一个月。

他们说的对吗?为什么?

同桌讨论一下。

谁来说说你们的想法?

(1、367人相当于鸽子,365、或366天相当于鸽巢......

? 2、49人相当于鸽子,12个月相当于鸽巢......)

真理是越辩越明!

3、星座测试命运

说起生日,我想起了现在非常流行的星座。采访几位同学,你是什么星座?

你用星座测试过命运吗?你相信星座测试的命运吗?

我们用鸽巢原理来说说你的想法。

全中国13亿人,12个星座,总有至少一亿以上的人命运相同。尽管他们的出身、经历、天资、机遇各不相同,但他们却具有完全相同的命,可能吗?这真的很荒谬。用星座测试命运,充其量是一种游戏娱乐一下而已,命运掌握在自己手中。

4、柯南破案:

?? “鸽巢问题”的原理不仅在数学中有用,在现实生活中也随处可见,看,谁来了?

(课件)有一次,小柯南走在大街上,无意间听到了一位老大爷和一个年轻人的对话:

年轻人:大爷,我最近急用钱,想把我的一个手机号卖掉,价格500元,请问您要吗?

大爷:是什么手机号呢?这么贵?

年轻人:我的手机号很特别,它所有的数字中没有一个数字重复......所以才这么贵的!

老大爷:哦!

听到这里,柯南马上跑过去悄悄提醒老大爷:“大爷,这是一个骗子,您要小心!”并且马上报了警,警察赶到后调查发现这个人果真是个骗子。

聪明的你,知道柯南是根据什么判断那个年轻人是骗子的吗?

(手机号11位数字相当于鸽子。0-9这十个数字相当于鸽巢,11÷10=1…1? 1+1=2,总有至少一个数字重复出现。)

4、 回顾与整理。

这节课我们认识了“鸽巢问题”,其实生活中还有许多的类似于“鸽巢问题”这样的知识等待我们去发现,去挖掘。只要你留心观察加上细心思考,一定会在平凡的事件中有不平凡的发现,也能创造一条真正属于你自己的原理!

下 课!

板书设计:

鸽? 巢? 问? 题

?? 物体? 抽屉 至少数

4? ÷ 3 =? 1……1?? ?? 1+1=2?

5? ? ÷ 4? =? 1……1? ? ? 1+1=2?

7? ? ÷ 5? =? 1……2? ? ? 1+1=2??

9 ?? ÷ 5? =? 1……4? ?? 1+1=2??

11 ? ÷? 5? =? 2……1 ?? ? 2+1=3??

28?? ?? ÷ 5? =? 5……3? ?? 5+1=6??

100?? ? ÷ 30? =? 3……1 3+1=4?

m ÷ n = 商……余数? 商+1

会计实习心得体会最新模板相关文章:

小学五六年级语文教案参考8篇

四年级数学教案8篇

小学一年级数学上册教案8篇

小学一年级数学加与减教案最新8篇

一年级数学加与减二教案8篇

一年级数学下册加与减三教案8篇

六年级语文《桥》教案7篇

小学一年级数学加与减教案通用8篇

六年级下册匆匆教案7篇

一年级数学下册加与减三教案模板8篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    28652

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。