年龄是一个关键因素,教师需要调整教案,以满足不同年龄段学生的认知水平和兴趣,教案的适切性还包括课堂管理和纪律的维护,以确保良好的学习氛围,28写作材料小编今天就为您带来了小学人教版四上数学教案8篇,相信一定会对你有所帮助。
小学人教版四上数学教案篇1
学生的认知结构,只有在经历学习活动的过程中主动才能完成。只有学生本人的积极思考、主动探索,才能有所发现、有所创新。但在不少学校里,我们仍常常见到这样的现象:学生尽管像容器、接收器一样把教师传授的知识全盘接收,可到面临实际应用时,却一筹莫展,束手无策。这种高分低能型人才现象清楚告诉我们当今的教育不能仅仅满足于知识的传授,而应该注重培养学生的能力和技能,尤其要把培养学生的知识迁移能力摆在首位。我班是创新教学改革实验班,因此我在人教版新课标四年级上册《因数中间或末尾有0的乘法》一课中进行了一些有益的尝试。
案例描述
一、学前准备。
同学们格外有精神,老师可带劲呢!
1、观察下列算式中两个因数有什么特点?(板书:因数末尾有0)
出示:6050 24020
师:你是怎么口算的?
生1:先把0前面的数相乘。
生2:把0抹掉后再相乘,抹掉几个0就在积的末尾添上几个0。
生3:数一数两个因数中一共有几个0,就在积的末尾添上几个0。
师:生1,生3合起来就是我们口算的方法(板书口算方法)你能用口算的方法进行笔算吗?
2、学生尝试笔算并板演。
3、小组讨论:因数末尾有0的笔算乘法和口算方法一样吗?
生1:一样。
生2:都可以先把0前面数的相乘。
生3:数一数两个因数中一共有几个0。
生4:只是把横式写成了竖式
二、巧用知识迁移,自主构建新知。
师:你能运用因数末尾有0的笔算乘法解决生活中的问题吗?
1、出示材料,特快列车每小时可行160千米,普通列车每小时可行106千米。
师:读材料,你能提出什么问题?
生1:特快列车比普通列车每小时多行多少千米?
生2:普通列车每小时比特快列车少行多少千米?
生3:特快列车3小时可行多小千米,半小时呢?
学生思维活跃,学生踊跃举手,出现课堂的高潮。
师:让老师提一个问题吧,你看老师提的问题中包含几个问题?
(1)出示问题:它们30小时各行了多少千米?(生1:包含2个问题;生2:因为它有各字)板书子问题:特快列车30小时可行多少千米?普通列车30小时可行多少千米?
(2)分析数量关系,学生自主列算式。
(3)观察这两道算式的因数有什么特点?(生:第一道算式因数末尾有0,第二道算式因数中间有0,板书因数中间有0)
(4)温馨提示:请同学们分组完成笔算,笔算时务必做到快、静、齐。(见图1)
针对第一二组的提问:①3为什么和6对齐?②积末尾的2个0是怎么得来的?
针对第三四组的提问:①3为什么和6对齐?②十位3和十位0相乘这一步可以省略不写吗?
生1:十位上的3须和第一个因数的每一位相乘。
生2:如果你省略不写,积就会少一位数,积变小了。
③明明30=0,百位上却写1,为什么?
生:进了位要加到来。
2、请你说一说红色得数是怎么得来的?(见图2)
同学们这么聪明,我们就来练一练。
78054 20840 107130
三、创设情境,加深理解。
师:下面,老师带同学们到数学王国遨游吧!
1、第一关:首先来到的是数学门诊部,请你当医生哦。
(1)计算85106时,十位8和十位0相乘这一步,积反正得0可以省略不写。()
(2)计算22516时,积的末尾没有0。()
(3)65040=2600()
先让学生判断(2)(3)格外小心,学生在思维定势影响下,就会负迁移。
师:当完了医生,我们再去哪里呢?
2、第二关:选择超市。
(1)400520最简便的写法是()(见图3)
(2)两位数与三位数最小的积是()
a、100000 b、10000 c、1000
(3)5600乘50,积的末尾有()个0。
a、3 b、4 c、5
(4)50840,它们的积是()
a、2320 b、20320 c、20xx
先让学生去猜想,再笔算验证。
师:大家表现得真不错,我们继续前进吧!
3、第三关:设计广场,请你当小小设计师。
()()=2400
这里学生的兴趣高涨,个个争当设计师。
师:完成了数学王国的旅程,这节课你有什么收获?
四、师生小结,畅谈收获。
案例分析
这是我校创新教学改革示范课,得到了一致地好评,关于这个案例我们可以思考下面几个问题:
1、既然教学因数中间或末尾有0的笔算乘法,为什么没有从一般的三位数乘两位数笔算乘法中引入?
2、为什么出示材料是书中的例题却当作练习讲?书中的例题是已经提出问题的,而本节课却让学生自主提问题,学生问题基础上筛选出例题中的问题?
3、为什么这节课改示范课中学生能全员参与、全神贯注呢?
回顾这节课,这节课最大的亮点是巧用知识迁移,学生自主建构认知。知识迁移属于心理学范畴,它指的是先前的学习对以后的学习所产生的影响。主要体现在以下几个方面:
一、由旧知识向新知识的迁移。
我们在教学中要注意让学生牢固掌握已学的知识,并用这些知识去分析、探讨相似内容的知识,即用已知来探讨未知。本节课并没有复习三位数乘两位数的笔算,而从口算乘法迁移到笔算乘法,小组讨论口算方法和笔算方法进行类比,把过去遇到的知识技能用到将来可能遇到的情景中去,关注了学生的已有经验和认知水平,是课新程理念最好的体现。
二、对知识由理解向表达的迁移。
很多人有一种错误的认识,认为表达是语文学科中的事,与数学无关。其实不然,理解是掌握知识的前提,而表达则是掌握知识情况的标志。对知识和技能来说,理解知识是掌握知识形成技能的首要条件和前提,而对知识、技能的表达则是人们是否真正理解、掌握知识的一种重要标志。任何人都不会否认这样的事实:如果一个人不能将知识表达出来,是不能算是对知识已经理解和掌握的,尽管对知识的表达方式不尽相同。本课并没有直接出示例题中的问题,让学生自主提问题,给学生一个表达的机会,较好的解决了许多学生似懂非懂、思路不清晰的问题。
三、由理论知识向实践的迁移。
数学活动有三个层面:直观感知层面、认识理解层面、结合生活综合运用层面。学生通过学习理解、掌握了一定的理论和知识,而学习掌握知识技能的目的在于在实践中加以运用。在综合运用层面,本课创设了数学王国的情境,以数学王国为主线,让学生经历了数学门诊、选择超市、设计广场三个画面,课堂的趣味性浓了,实现了理论知识向实践的迁移。尤其是设计广场这一环节,真的是波澜起伏,孩子们通过相互合作、相互交流、相互促进获得了成功的体验,增强了学好数学的信心。
四、师生间情感体验的迁移。
新课程提倡建立多元化、共同参与的激励性评价模式。上课一开始,一句话的课前组织教学,同学们格外有精神,老师可带劲呢!,把学生的无意注意转变为有意注意,学生以饱满的热情投入到课堂中来,激发了学生的兴趣和未知欲,实现了师生间情感体验的迁移。
由于本节课对数学活动进行了精心设计和有效引导,巧用知识迁移,让学生真正经历了探索和发现的研究过程,学生参与到了认知的自主构建中来,不仅学到了数学知识,接触到了一些研究数学的方法,而且还获得了成功的体验。这不就是我们新课堂教学所追求的吗?
小学人教版四上数学教案篇2
设计说明
11~20各数的写法是在学生已经学会数、读11~20各数,知道11~20各数组成的基础上进行教学的。在设计本节课时,主要从以下几方面考虑:
1、注重帮助学生建立数位的概念。
数位表是学生第一次接触的,它具有一定的抽象性,而一年级学生是以形象思维为主,因此在教学时,应把看一看、拨一拨、想一想、写一写结合。先让学生在自己确定有几个十和几个一之后,再在计数器上拨数,最后利用数位表写数。由形象到抽象,符合学生的认知规律,也体现了教学过程的循序渐进原则。
2、培养学生的迁移类推能力。
在教学写数时,教师没有必要把11~20各数的写法都教给学生,在教学了一两个数的写法后,引导学生自己写出其他的数,这样不仅充分发挥了学生的主体作用,还培养了学生的迁移类推能力。
课前准备
教师准备ppt课件计数器20根小棒0~20的数字卡片数位表
学生准备计数器20根小棒0~20的数字卡片数位表
教学过程
⊙复习导入
1、在商店里经常会看到许多数,你能读出下面这些物品的价格吗?
12元18元20元
2、我要买一支12元的钢笔,我应该怎样付钱才能使售货员不用找钱?(用小棒代替钱摆一摆)
怎样摆才能使别人一眼就看出来是12呢?(先把10根小棒捆成一捆,再摆2根小棒)
3、这里有几个十,几个一?
4、导入新课:同学们,我们已经学会数11~20各数,并且知道1个十和几个一合起来就是十几,我们不仅要学会数数、读数,而且还要学会写数。
设计意图:把数与生活实际相结合,让学生更加容易接受,同时复习了上节课学习的读数,为教学写数做好铺垫。
⊙探究新知
1、认识计数器。
为了让同学们更好地学习写数,今天老师带来了一位新朋友。(出示计数器)
(1)介绍计数器。
师:请同学们仔细观察,计数器是由哪些部分组成的?(生观察后,互相说一说)
师:从右边起,第一档为“个位”,第二档为“十位”。
(2)不看计数器,让学生说一说计数器从右起第一档是什么位?第二档是什么位?
(3)结合计数器讲解写数方法。
写数的时候,如果有几个“十”就在十位上写几,有几个“一”就在个位上写几。
2、学写11。
(1)请同学们摆出11根小棒,并回答:11是由几个十和几个一组成的?(教师随学生回答,将1捆小棒移到十位上,1根小棒移到个位上)
(2)这个数在计数器上怎么表示呢?(同样的一颗珠子,所在的位置不同,表示的`意思也不一样)
(3)提问:计数器的十位上拨几,个位上拨几?(十位上拨1,个位上拨1)
(4)填一填。(课件出示)
十位上的1表示1个(),个位上的1表示1个()。
(5)写数。
提问:有1个十要在十位上写几?有1个一要在个位上写几?这个数是多少?(11)
3、学生摆小棒试着写17。
(1)提问:请你先摆好数位表,然后在数位表的上面摆出17根小棒。
(2)说出17里有几个十和几个一,1个十在哪一位上写几。7个一呢?
(3)请同学们把它写在数位表上。
(4)活动:让三名学生一组合作,一名学生摆小棒,一名学生拨计数器,另一名学生在数位表上记录数据。
4、学生独立探究20的写法。
(1)学生独立试写。
(2)在学生独立完成的基础上交流写法:个位上不写“0”行不行?为什么?(擦掉0就看不出是20了,0起到占位作用)
设计意图:教师具体讲解怎样写出一个数,让学生了解写数的方法,并逐步放手,让学生在动手操作与小组合作的学习中,掌握正确写数的方法。
小学人教版四上数学教案篇3
教学目标
1.结合具体情境,能说出简单的随机现象中所有可能发生的结果,体验事件发生的随机性。
2.在游戏中感受随机现象结果发生的可能性是有大小的,能对简单随机现象发生的可能性大小作出定性判断。
3.借助观察猜测、操作实验、活动交流,培养学生合理推测的能力,并能用数学的眼光看待生活现象。
教学重点难点
1.初步感受事件发生的可能性是不确定的,
2.体会事件发生的可能性有大有小。
教具与学具:
多媒体课件、球以及摸球用的袋子、记录单、扑克牌。
教学过程
活动1【导入】创设情境
师:同学们你们都喜欢玩游戏,这节课我们就一起来玩游戏。看谁能在玩游戏的过程中学到最多的数学知识。玩游戏前老师先分组,1、2?大组为甲队,3、4大组为乙队。哪一个组先来玩游戏。
?设计意图:让学生在很轻松和谐的情境中进入新知的学习,充分调动学生的学习兴趣,使学生在开课就有了学习动力,为新课的学习酝酿了良好的情绪。】
活动2【讲授】游戏冲突,引发思考
师:两个组都想先来,我们用什么方法来决定那个组先来。
师:好办法,抛硬币每一面的可能性都是?,很公平。但是今天老师没有硬币,你们还有其他的方法吗?
生:石头、剪刀、布。
师:石头、剪刀、布你们觉得这种方法公平吗?同桌之间单号代表甲队,双号代表乙队互相猜三次试试看。
师:刚才谁赢了?你们觉得这个游戏公平吗?(公平)
师:为什么,能不能用可能性的知识来说明这个游戏的公平性呢?今天这节我们继续来研究可能性。板书课题。
?设计意图:数学游戏是学生学好数学知识的催化剂,数学猜想是引领学生走进数学宝库的金钥匙。在这个环节中从学生玩“石头剪刀布”的游戏中引导学生思考、猜想,激活了学生对可能性的原有知识经验和生活经验,从而使学生对可能性的学习有了初步的感觉。】
活动3【活动】探究新知:
1、你觉得两个同学玩石头、剪刀、布的游戏,其中一人获胜的可能性是多少?为什么?
2、要想知道每人获胜的可能到底是多少,我们必须列举出两个人完游戏时会出现的所有可能的结果。请同学们小组合作讨论用自己的'方法,把完游戏时会出现的所有可能的结果记录下来。
3、小组合作交流
4、汇报:发现:有的学生列举了7种、8种、9种等各种不同的结果和记录方法。
5、有没有办法不漏掉也不重复呢?
6、老师利用表格归纳总结列举方法?
活动4【练习】巩固提高:
1、做一做。
(1)老师读题:
(2)相信大家都能用这3个数字组成不同的三位数吧。那么谁能办法写出所有不同的三位数呢?请把它写下来。
师:用这样的方法来决定“胜负”你觉得公平吗?为什么?
生:单数赢了4次,赢和可能性是4/6,双数赢了2次。赢的可能性2/6。
2、出示练习1。两人一组,算出2、3、7、8中任意两个数的积。
如果它们的积是2的整数倍,甲队获胜;如果它们的积是3的整数倍,则乙队获胜。这个玩法公平吗?
?设计意图:通过小组比赛的情境来触发学生积极思考游戏的公平性,并运用刚学到的方法来解决问题。设计练习时由浅入深,层层递进,紧扣课题,不但使学生所学的知识进一步深化,而且使学生在练习中思维得以发展,创新素质得到锤炼。因而达到活学、巧学、乐学的境界。】
活动5【讲授】全课小结
通过今天的学习,你有什么收获?
小学人教版四上数学教案篇4
教学目标:
1、通过复习,学生进一步进解除法意义,熟练计算除法算式。
2、进一步正确读、写万以内数。
3、熟练计算万以内数的加、减法及估算。
4、能用所学生数学知识解决简单的实际问题。
教学过程:
一、复习除法意义与计算:
1、出示书上主题图:你看到了什么?
2、怎样计算?
3、为什么用除法?说说什么情境下要用除法计算?
4、学生列式计算。
5、说说你是怎样计算的`?
6、师出示一些除法口算,学生开火车进行口算。
二、复习万以内数的认识。
1、师出示3569、5643、7800、9860、6089、7008、让学生读数。
2、说说万以内数的怎样的?
3、师出示:四千三百六十九、三千零三、五千七百等数,让学生说一说万以内数的写法是怎样的?
4、师出示书上第120第5题,说说哪一些是准确数,哪些是近似数?
5、举例说说生活中哪些是准确数,哪些是近似数?
三、复习万以内数的加、减法。
1、学生独立完成书上第6、7题。
2、交流计算时要注意什么?
四、复习估算:
1、学生独立完成书第三者121页第8题,要求用估臬的方法完成。
2、小结:只要作出正确的判断,估算的方法可以不同。
五、总结:通过本节课的学习你有什么收获?
小学人教版四上数学教案篇5
设计说明
1.创设情境,引入新课。
数学教学中,教师要不失时机地创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,使学生从中感悟到数学的乐趣,产生学习的需要,激发探索新知识的积极性,主动有效地参与学习。上课伊始,由学生喜欢的体育运动这一话题引入本节课的情境,拉近了课本与学生的距离,使学生产生浓厚的学习兴趣。
2.重视解题方法的教学。
“授之以鱼不如授之以渔”,解决问题的教学,关键是理清思路,教授方法,启迪思维,提高解题能力。因此在这节课的教学中,首先让学生观察图画,了解画面信息,接着组织学生小组交流,分析数量关系,讨论解决问题的方法。在列方程解决问题的过程中,通过设计关键问题,层层深入引导学生讨论交流,使学生学会写设句,并根据题中的数量关系列出方程。最后引导学生总结列方程解决问题的步骤,使学生对本节课的知识有一个系统的认识。
课前准备
教师准备ppt课件学情检测卡课堂活动卡
学生准备练习卡片
教学过程
⊙创设情境,谈话导入
师:同学们都喜欢什么体育运动?
生:排球、乒乓球、篮球、足球……
师:你知道吗?有一个小朋友叫小明,他跟你们一样,也非常喜欢体育运动,更是在学校的跳远比赛中破了纪录,你们想知道学校原来的跳远纪录是多少吗?这节课我们就来列方程解决这个问题。(板书课题)
设计意图:把学生感兴趣的话题引入到新知的学习中,通过创设情境使学生感受到生活中处处有数学,从而对本节课的知识产生探究欲望,这样的设计过渡自然、顺理成章。
⊙探究新知
1.教学例1,出示情境图。
(1)写用字母x表示未知数的设句。
师:请同学们认真观察情境图并说说从中获取了哪些信息。
预设生1:小明的跳远成绩为4.21m,超过原纪录0.06m。
生2:这道题让我们求学校原跳远纪录是多少米。
师:应该设谁为x?怎样把x表示什么写清楚?
生:这道题要求学校原跳远纪录是多少米,应设学校原跳远纪录为xm。
(2)找出题中的等量关系,列出方程。
师:你能找出题中的等量关系吗?
(生讨论后汇报:原纪录+超出部分=小明的成绩)
师:你能根据等量关系列出方程吗?以小组为单位讨论。
(生小组讨论后汇报:x+0.06=4.21)
(3)解方程并检验。
师:请同学们试着解方程。
(生尝试完成解题全过程并汇报)
教师根据学生汇报,板书解题过程:
例1解:设学校原跳远纪录是xm。
x+0.06=4.21
x+0.06-0.06=4.21-0.06
x=4.15
,答:学校原跳远纪录是4.15m。
生检验并交流方法。
预设生1:把x=4.15代入原方程,看方程左右两边是否相等,如果相等就说明做对了。
生2:把x=4.15代入原题中,看看和原题的已知条件是否相符,如果相符就说明做对了。
小学人教版四上数学教案篇6
教材分析
这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。
学情分析
在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。
教学目标
逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。
教学重点和难点
1、 能确定单位“1”,理清题中的数量关系。
2、利用题中的等量关系用方程解答。
教学过程
一、1、苹果的重量是x千克,梨的重量比苹果多5千克 。
⑴、梨的重量比苹果多了( )千克。
⑵、梨的重量是( )千克。
2、钢笔x元,比毛笔少了3元 。
⑴、钢笔比毛笔少了( )元。
⑵、毛笔是( )元。
3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新授课
1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?
(1)卖了 是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量
(4)指名列出方程。解:设运来苹果x千克。
x-36=20
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)
(2)学生试画出线段图。
(3)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(4)根据等量关系式解答问题。
解:设航模小组有人。
(1+)=25
=25÷
=20
答:略。
三、小结
1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、练习
练习十第4、12、14题。
小学人教版四上数学教案篇7
教学目标:
1.知识与技能:使学生初步认识几分之一,会读、会写几分之一,能比较分子是1的分数的大小;培养学生观察、比较的能力及操作、表达能力和合作交流的意识;
2.过程与方法:让学生经历建立分数概念的过程,体验动手操作、合作交流的方法;让学生主动去寻求分数,能自己往下写分数;
3.情感、态度与价值观:让学生在体验中获得成功感。
教学重、难点:
认识几分之一的分数;初步建立几分之一分数的概念。
教学用具:
各类卡片图,各类折纸。
教学流程:
(一)创设情境,导入新知:
t:小朋友们,我们都知道在奥运赛场上有公平、公正的裁判员,在法庭上有公平、公正的大法官,在学校里老师又用公平、公正的方法来教育我们,你也想做一个公平、公正的裁判员、小法官和小老师吗?(想!)那老师就来考考你们。
出示:小华、小丽两个小朋友。
a:出示6个大苹果,怎样公平、公正来分一分。(要求学生说出平均分成两份,学生上去分好。)
b:出示四罐牛奶,怎样公平、公正来分一分。(平均分成两份,学生分。)
c:出示两个汉堡,又该怎样来分?(齐分,学生上去分。)
(小结:我们都把它们进行了平均分板书。)
d:出示一个大饼,你能公平公正地来分一分吗?你能用我们已经学过的`数来表示吗?
揭题:我们要用一个新的数来表示,它叫做分数(板书)
(二)探究新知,不断摸索:
1.认识。
t:刚才我们把一个大饼通过平均分分成了两份,其中的一份我们就可以用一个分数来表示,这个分数就是。那怎么来书写呢?跟着老师一起写(学生举起手指一起写),先写──表示平均分,再写2表示把大饼平均分成了2份,再写1表示其中的一份,读作二分之一(齐读两遍,并举起手跟老师一起边演示边说:把大饼平均分成两份,每份是它的二分之一。)
教师拿起分好的大饼:左边这一份是整个大饼的,那右边这一份呢?(齐说:)
同桌活动:从信封中拿出各种折纸,你能折一折这些图形的吗?(请学生交流,注意语言的表达。)
t:老师也忍不住想来折一折了(拿起一个正方形的折纸,随便一折,将它剪下,举起一块说是。)(学生反对,强调没有平均分不能用分数来表示。)
t:在日常生活中我们有没有碰到过的例子?(学生交流。)
2.自己再想一个分数,把这个分数折出来,画出来。
请学生同桌合作,利用折纸,折出自己想出的一个分数,用画阴影部分的方法表示好,并请画得最快的几个小朋友将自己的成果展示在黑板上,写上你所表示的分数。(教师选取部分,一起评价,并说说这个分数所表示的意思,注意学生语言的表达)
(三)应用迁移,巩固提高:
1.一口气来说一说:
2.用手势来判一判:
3.根据分数在图中涂阴影,仔细观察,比较一下这些分数的大小:
4.它是一个长方形,把它这样对半平分,再平分在每一块上涂上颜色,你知道每种颜色是整体的几分之一吗?
(四)总结反思,拓展升华:
1.今天,你收获了多少,能一起来分享吗?
2.课外,请你再去折一折,你还能折出多少分数来?
3.你还想知道些什么?
小学人教版四上数学教案篇8
【设计理念】
数学课程标准明确指出,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。本节课抓住关键词,把握自然数(0除外)按因数个数分类的数学方法,让学生充分讨论质数和合数的特征,经历质数和合数这一知识的发生发展过程,通过观察、比较、分析、归纳,构建质数和合数概念,更好地掌握数学思想,提升学生学习数学的兴趣,培养良好的学习态度。
【教学内容】
人教版五年级下册第23~24页“质数与合数”。
【学情与教材分析】
本课是在学生掌握“因数、倍数、奇数、偶数、2、3、5的倍数特征”的基础上进行的。本单元涉及的概念多,“质数与合数”是一节概念教学课,概念抽象易混淆,在生活中运用较少,与学生的生活有一定的距离,是本课的难点也是本单元内容教学的难点。
【教学目标】
1.让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。
2.把握整数按因数个数的分类法,理解和掌握质数与合数的特征,能应用概念寻找或判断质数。
3.通过研究质数与合数特征的学习活动,体会学习数学的思想方法。
【教学准备】
课件;练习纸每生一张。
【教学过程】
活动一:构建质数和合数概念
1.引导学生按要求列出乘法算式:“因数用整数、不用1”。
教师板书“1=”……“20=”,教师不言语,用手势引导学生按要求说出乘法算式。
学情预设:学生中可能出现用1或小数的问题,师用手势提醒“不用1”“用整数”。
2.师:按“用整数、不用1”的要求无法列出乘法算式的数,我们叫它质数;可以列出乘法算式的数,我们叫它合数。
教师依次在这些质数的前面填上“质数”、“合数”,学生自然而然的在教师板书时说出“质数”和“合数”。
【设计意图】
“活动一”全过程教师基本不言语,只用手势或神情来组织教学,给学生一个神秘感,在创设静谧的氛围中静心体会质数与合数的区别。
活动二:讨论质数和合数的特征
1.师:“从这些乘法算式中,你发现了什么?
学情预设:学生有可能说出质数都是奇数;对策:教师指出2是质数、15是合数;
合数可以写出乘法算式;如果不用1,质数无法写出乘法算式。
2.教师擦除“不用1”,学生列出相应的乘法算式,再进一步用因数的个数来探讨质数和合数的概念。
师:观察因数的个数,你又发现了什么?
从乘法算式中,学生很快并能清晰地发现质数只有1和它本身两个因数,而合数则除了1和它本身两个因数外,还有别的因数(至少三个因数)。
3.根据学生回答板书。
4.讨论:“1”是质数还是合数?
学情预设:有的学生可能认为:1有两个因数,一个是1,一个是它本身,1应该是质数;有的学生可能认为:1的本身还是1,所以1应该只有一个因数;有的学生可能认为:1既不是质数也不是合数。
师把板书写完整。
5.小结:谁能用自己的语言说一说什么样的数叫质数?什么样的数叫合数?怎样判断一个数是质数还是合数?
【设计意图】
预留足够的时间让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。并尝试根据因数的个数归纳出质数与合数的概念,学会运用质数和合数的特征进行判断,充分感受到知识之间既有区别,又有联系。
活动三:应用概念寻找或判断质数
1.继续寻找30以内的其它质数。
2.做一做:出示数字卡片:17、22、29、35、37、87、93、96、1,将数字卡片填入质数与合数相应的集合圈里。
3.下面的说法正确吗?说说你的理由。
⑴所有的奇数都是质数。()
⑵所有的偶数都是合数。()
⑶在1、2、3、4、5……中,除了质数以外都是合数。()
⑷两个质数的和是偶数。()
【设计意图】
通过不断的寻找、发现与判断质数的练习中,使学生意识可以用合理的方法来判断,巩固质数与合数特征的认识。
活动四:拓展延伸深化概念
1.你知道他们各是多少吗?(在小组内交流各自的想法后汇报)
⑴两个质数的和是10,积是21,他们各是多少?
⑵两个质数的和是20,积是91,他们各是多少?
⑶最小的质数是?最小的合数是?
2.在括号里填上质数:
8=()+()12=()+()28=()+()
3.数学小阅读:哥德巴赫猜想。
同学们你们知道吗,刚才你们正在尝试解决一道世界难题,做了一件很有价值的事,这个世界难题就是:是不是所有大于2的偶数,都可以写成两个质数的和呢?这个问题是德国数学家哥德巴赫最先提出的,所以被称为哥德巴赫猜想。世界各国的数学家都想攻克这一难题,但至今还未解决。我国数学家陈景润在这一领域已经取得了举世瞩目的成果。
请同学们进行数学小阅读:哥德巴赫猜想。课后,感兴趣的同学们也可以查找相关书籍或上网查阅相关资料。
【设计意图】
在适度拓展中,尝试解决“任何大于2的偶数,都可以写成两个质数的和”的哥德巴赫猜想。在数学小阅读中,让学生了解数学发展的历史,感受数学文化的魅力,同时留有空间,让学生课后探究。
活动五:总结
这节课你有哪些收获?
会计实习心得体会最新模板相关文章: