28写作材料 >工作计划

乘法交换律教案7篇

结合实际的教学进度编写教案,能够更好地引导学生进行学习总结和复习,巩固和应用所学知识,通过一个教案,教师可以清晰地了解每个教学环节的目标和任务,有针对性地进行教学准备,下面是28写作材料小编为您分享的乘法交换律教案7篇,感谢您的参阅。

乘法交换律教案7篇

乘法交换律教案篇1

教学目标:

1、使学生理解和掌握乘法交换律和结合律。

2、借助观察、比较、概括等方法,应用乘法交换律和结合律进行简便计算,培养学生的分析推理能力。

3、培养学生运用新知识解决实际问题的能力。

教学重难点:

1、使学生理解并运用乘法交换律和结合律。

2、乘法交换律和结合率的运用。

教学过程:

一、情境导入,展示目标

1、谈话导入

2、口算训练

50x70= 125 x 8= 40 x 5= 11+7= 4+25=

70 x 50= 8 x 125= 5 x 40= 7+11= 25+4=

3、复习乘法算式的各部分名称:

板书:5 x 4 = 20

因数,因数积

4、学习目标要求。

二、自主学习、合作探究

领会主题图

1、观察图意

2、说说你从图中你了解到了那些信息

3、根据图中带给我们的'信息,可解决那些问题?

4、出示例5:负责挖坑、种树的一共有多少人?

(1)、分析数量关系

(2)、列式计算:4 x 25=100(人)或25 x 4=100(人)

(3)、引导观察,比较两种解决的结果,这两个算式之间可以用什么符号连接?(4 x 25=25 x 4)

(4)、这个等式说明了什么?(把4和25两个因数交换位置,积不变)

(5)、举例

(6)、归纳总结:

交换两个因数的位置,积不变,叫乘法交换律。

(7)、用字母表示乘法交换律

a x b=b x a

说一说a、b可以是那些数?(a、b可以是任何两个不同的数)

(8)、找一找,主题图中哪个问题可以用乘法交换律来解决。

师:加法中有结合律,乘法中是不是也会有结合律呢?乘法的结合律会是什么样的?我们一起研究一下。

三、师生互动、点拨升华

1、出示例6:有25个小组,每组要种5棵树,每棵树要浇2桶水。一共要浇多少桶水?

(1)、读题,分析数量关系。

(2)、请同学用不同的方法解答。板书解题思路。

方法一:(25 x 5)x 2方法二:25 x(5 x 2)

=125 x 2 =25 x 10

=250(桶)=250(桶)

(3)、小组讨论两种解法的相同点和不同点。

(4)、这两个算式之间可以用什么符号连接?

板书:(25 x 5)x 2=25 x(5 x 2)

(5)、观察下面三组算式,说说你发现了什么?

(15 x 6)x 10()15 x(6 x 10)

(125 x 80)x 3()125 x(80 x 3)

(12 x 25)x 4()12 x(25 x 4)

(6)、归纳总结:

三个数相乘,先乘两个数,或者先乘后两个数,积不变,叫乘法结合律。

(7)、用字母表示乘法结合律:(a x b)x c=a x(b x c)

这里a、b、c表示的是大于或等于0的整数。

比较、概括、归纳

比较加法交换律和乘法交换律,加法结合律和乘法结合律,你发现了什么?

交换律是两数相加(乘)的规律,既交换两个加(因)数的位置,和(积)不变;结合律是三数相加(乘)的规律,既可以从左往右计算,也可以先把后两个数先相加(乘),和(积)不变。

四、变式训练、巩固提高

(1)、填一填:

75 x 26=()x()8 x 2=2()

a x b=()x()a x()=15 x()

125 x 7 x 8=()x()x 7(40 x 15)x [ ]=40 x([ ] x 6)

25 x(4 x [ ])x([ ] x 4)x 13 2 x 4 x 6 x 5=(4 x 6)x([ ] x [ ])

(2)、学校教学楼共有4层,每层有5间教室,每个教室安6盏灯。一共需要多少盏灯?

五、课堂小结、拓展延伸

通过本节课的学习,你都有哪些收获?

乘法交换律教案篇2

?教学目标】

1、通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。

2、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

3、会用乘法分配律进行一些简便计算。

?教学重点】

自主发现乘法分配律,并能用字母表示。

?教学难点】

发现并让学生自己归纳乘法分配律

?课前准备】

口算练习题,幻灯片

?教学过程】

一、新知导入

师:请同学们进行口算练习(指名回答)

5×2=25×2=

5×4=25×4=

15×2=16×5=

15×4=45×2=

75×4=125×8=

师:请同学们观察这一组口算练习有什么特点。

生:他们的结果都是整十整百整千的数。

师:同学们的观察真仔细,像这样2个数相乘结果是整十整百整千的数,都是好朋友,这些好朋友今后都会帮助我们来运算,我们都应记住。这里特别的请大家记住三对好朋友:5×2、25×4、125×8。

师:上节课,我们进行了有趣的探索活动,发现了很多奇妙的规律,在我们的数学运算中,还有很多规律,我们这节课就继续探索和乘法有关的知识,相信大家一定会有新的发现。(板书:探索与发现)

二、新知探索

师:同学们玩过玩具积木吗?

生:玩过。

师:你会用积木搭些什么呢?

学生回答自己用积木搭过的物体。

师:老师也用小正方体积木搭了一个立体图形。大家一起来看看。(课件出示书上的情境图)

师:你能看出老师搭的是什么形状吗?

生1:正方体。

生2:不对,是长方体。

师:真好,你们观察得真仔细!那么这个长方体是由多少个小正方体组成的呢?你们是怎样计算得到这个答案的呢?请同学们每个人动笔算一算。

(师将学生的多种算法板书在黑板上,板书:从上面看:3×5×4

从前面看:5×4×3

从侧面看:3×4×5)

师:由于同学们观察角度的不同,所以列出的算式也不相同,现在请同学们比较一下,上面的第一和第二这2个算式有什么相同点和不同点?

生:相同点都是3、4、5三个数字相同,不同点是数字的位置不同。

师:数字位置不同运算顺序就不同,那么大家想想,如果三个数字的位置不变,你有什么办法还按照刚才同学的运算顺序进行运算吗?(不亦动3、4、5的位置,能不能先算5×4)

生:用小括号把5×4括起来。

(板书:(5×4)×3=3×(5×4))

师:请同学们计算一下这2个算式的结果。(学生计算发现结果都是60)

师:我们以往将三个数连乘都是先把前两个数相乘,再乘第三个数,而现在我们也可以把后两个数先相乘,再和第一个数相乘,它们的结果相同。这是一种巧合呢?还是一个规律呢?谁能举出类似这样的三个数连乘的例子?(找2-3个学生举例子,例子板书在黑板上)

师:同学们,你能举例了吗?现在请每个人在练习本上举一个例子,然后在小组内汇报你举的例子。(提示:如果找到比较大的数,可以借助计算器)

(学生汇报之后教师板书学生的举例,3、4个即可)

师:从刚才大家的举例来看,每一组的结果都是相同的。同学们,你能用自己的语言说说这些等式的共同点吗?

师:同学们概括的真好,这就是乘法结合律。如果用a,b,c表示三个数,你能总结出发现的规律吗?(如果同学们概括不出来,可以用字母的方法表示,并提示学生以后用字母这种表示方法表示其他的规律,更加便捷)

师:现在请同桌2人对照这字母的表达方式说一说什么是乘法结合律。

师:同学们真聪明!请回想一下,我们是怎样发现乘法结合律的?

在计算搭长方体所需要的小正方体个数过程中发现了三个数连成,顺序不同,结果却相同这一问题(板书:发现问题)于是我们从中猜想是不是有什么规律(板书:提出假设)经过举例验证(板书:举例验证)我们总结出乘法的结合律(板书:概括规律)

以后,我们可以用这样的方法去发现更多的规律。

三、新知应用

(1)练习

(42×4)×5=42×(4×□)

(35×2)×5=35×(□×5)

(28×2)×5=

(47×25)×4=47×(□×□)

师:这里面出现了我们一上课提到的三对好朋友,大家发现了吗?(再次提醒学生注意5×2、25×4、125×8这三组数)

(2)课件出示:

38×25×4

49×125×8

(带领学生做第一道练习题,在黑板上板书过程,指导学生观察数字以及板书格式,体会简便的必要性。然后再让学生在练习本上做第二道习题。)

(3)让学生观察一开始板书的三组式子:3×5×4

5×4×3

3×5×4

师:观察第一组和第三组式子,有什么发现?

生:5×4和5×4位置改变了。

师:没错,那么这2个式子的结果相同吗?

生:相同

师;你能再举几个类似的例子吗(学生举例)

师:其实这也是数学中的一个重要运算定律

乘法交换律教案篇3

设计说明

1.注重培养学生自主合作探究的能力。

?数学课程标准》指出:自主探究、合作交流是学生学习数学的重要方式。在合作交流中探究加法交换律和乘法交换律的意义,让学生从交流中得出结论,这样既尊重了学生学习的主体地位,又增强了学生合作探究能力的培养,学生不仅学会了运用已学的运算律来解决问题,随机渗透了类推、迁移的数学思想,也让学生在探究的过程中进一步加深了对加法交换律和乘法交换律的意义的理解。

2.注重知识的运用。

?数学课程标准》强调:人人都能获得必需的数学。在学生掌握了加法交换律和乘法交换律的基础上,从不同角度、不同层次设计习题,学生经历了解决问题的全过程,充分体验了数学与生活的密切联系,感受了数学的作用与价值。

课前准备

教师准备ppt课件

教学过程

⊙复习旧知,导入新课

出示题目:

→4+6=6+4

→3×5=5×3

师:分别观察这两组式子,请你照样子再写一组。

设计意图:将加法交换律和乘法交换律同时呈现、同时研究,充分做到了尊重学生的认知规律,给学生创造了一个创新和实践的学习环境,既激发了学生的学习兴趣和探究欲望,又使学生获得了成功的体验。

⊙活动探究,获取新知

1.加法交换律。

(1)观察算式,发现规律。

观察第一组算式,说一说你发现了什么。

预设

生:两个数相加,交换加数的位置,和不变。

(2)验证并总结规律。

师:在4+6=6+4这道算式中,交换了加数的位置,和不变。是不是在所有的加法算式中,交换加数的位置,和都不会发生改变呢?现在我们就一起来验证一下。请同学们写出几道加法算式并试着交换两个加数的位置,计算它们的结果,验证我们的猜想。

学生验证,汇报交流,教师总结:两个数相加,交换加数的位置,和不变。这就是加法交换律。

(3)用字母表示加法交换律。

师:谁能用字母表示一下加法交换律?

(a+b=b+a)

(4)反馈练习。

20+30=()+()

524+678=()+524

□+()=○+()

3+()=y+()

2.乘法交换律。

(1)观察算式,发现规律。

师:观察第二组算式,说一说你发现了什么。

预设

生:两个数相乘,交换乘数的位置,积不变。

(2)验证并总结规律。

师:请每位同学编出乘法算式并试着交换两个乘数的位置,看看它们的结果有没有发生变化。

学生验证,汇报交流,教师总结:两个数相乘,交换乘数的位置,它们的积不变。这就是乘法交换律。

(3)用字母表示乘法交换律。

师:怎样用字母来表示乘法交换律呢?

(a×b=b×a)

师:这里的a、b都可以表示哪些数?

(学生先在小组内讨论,然后汇报)

(4)反馈练习。

10×5=()×()

()×△=()×☆

c×()=f×()

乘法交换律教案篇4

教学内容:加法交换律和乘法交换律

教学目标:

1.经历教法交换律和乘法交换律的探索过程,会用字母表示加法交换律和乘法交换律,培养发现问题和提出问题的能力,积累数学活动经验。

2.通过列举生活实例解释加法交换律和乘法交换律的过程,认识运算律丰富的现实背景,了解加法交换律和乘法交换律的用途,发现应用意识。

教学重点:经历观察、归纳、猜想、验证的过程,培养学生的观察、概括能力,

渗透归纳猜想的数学思想方法。

教学难点:归纳猜想的数学思想方法渗透。

教学过程:

一、导入阶段:

出示主题图,向学生介绍“爱心助学大行动”,某商店为帮助贫困山区学生特别举行义卖活动把营业额全部献给希望小学。看,小胖和小亚也来帮忙了

问:从图中你能获得哪些数学信息?

你还能提出哪些数学问题?

二、探究阶段:

1.投影演示:(果汁)师:小亚和小胖各有多少罐果汁?合起来桌上有几罐果汁?谁能列式计算?

师:谁能说出两道加法算式中各部分的名称?

提问:仔细观察一下,这两个算式有什么相同点和不同点?

(相同点是两个加数分别是8和18,和都是26,而不同处只是两个加数的位置不同)

师:因为8+18=2618+8=26所以8+18=18+8

师:有谁能模仿这道题目的形式举出类似的例子?同桌两组相互交流。

(1)根据我们举的例子你发现了什么?(小组交流)

提示:这些例子都是几个数相加?两者之间发生了什么变化?结果怎样?

归纳:两个数相加,交换加数的位置,它们的和不变。这叫做加法交换律。

(2)让学生用自己喜欢的方式表示加法交换律(启发学生用符号或字母)

例:◆+●=●+◆甲数+乙数=乙数+甲数a+b=b+a这里的a、b可以是哪些数?

加法交换律用字母表示:a+b=b+a

(3)竖式计算74+641

师:运用加法交换律,我们还可以验算加法的计算结果是否正确。

74验算:641

+641+74

715715

小结:验算时,可以将两个加数交换位置后再加一遍。也可以用原来的竖式,把每一位上的数从下往上再一遍。

2.投影演示:

(1)图中小箱里共有几罐果汁?6×3=183×6=18

师:请学生分别读一下以上两个算式,因为这两个算式计算结果相等,所以我们可以把这两个算式用等号连接。

(2)根据我们举的例子你发现了什么?(小组交流)问题:等式左边各有什么相同的地方?

每一组等式的左右两边又有什么联系?

师:这就是我们这节课所要学习乘法交换律。刚才同学们已经用自己的话归纳了一下,那么什么是乘法交换律?(出示结论)

小结:两个数相乘,交换因数的位置,它们的积不变。这叫做乘法交换律。

(3)如果用字母a、b分别表示两个数,那么乘法交换律用字母可以怎样表示?仿这道题目的形式举出类似的例子?同桌两组相互交流。

(4)如果用字母a、b分别表示两个数,那么乘法交换律用字母可以怎样表示?

板书:a×b=b×a

三、总结:

今天这节课我们学习了加法交换律和乘法交换律,并且学会了用字母来表示。还学习了用这两个运算定律来验算加法和乘法。

板书设计:

加法交换律和乘法交换律

8+18=263×6=18

18+8=266×3=18

8+18=18+83×6=6×3

加法交换律:a+b=b+a乘法交换律:a×b=b×a

乘法交换律教案篇5

一、教材分析:

本教材是在学生已经掌握了乘法的意义和加法交换律、结合律有了初步认识的基础上进行教学的。本节课力求突出以学生发展为本的教育思想,所以整个教学过程要求以学生自主学习、自主探索为主,通过学生的观察、验证、归纳、运用等数学学习形式,让学生去感受数学问题的探索性和挑战性。学生在认知的过程中可能对于在使用乘法结合律的基础上又运用乘法交换律有冲突,老师在其中只是起到一个“穿针引线”的作用,让学生把前后内容联系起来,从而更好地服务于简便计算,达到灵活运用的目的与效果。

教学内容:

国标本苏教版义务教育课程标准实验教科书第七册数学p61-62。

教学目标:

1、使学生理解和掌握乘法交换律和结合律,会运用乘法运算律进行简便计算。

2、通过乘法交换律和结合律公式的推导教学,培养学生思维能力,及科学的学习方法。

3、培养学生的分析、比较、综合能力以及初步的抽象概括能力

4、通过学生的自主学习,激发学生学习数学的兴趣。

5、结合教学中具体的教学事例对学生进行学习习惯、道德品质方面的教育。

教学重点:

引导学生概括出乘法交换律和结合律,并运用乘法运算律进行简算。

教学难点:

乘法交换律与结合律的推导过程是学习的难点。

教学准备:

多媒体课件。

教学过程:

(一)谈话导入

1、出示图片

2、学生观察图片并交流:你能发现哪些数学信息呢?你能解决什么数学问题?根据学生的反馈板书:

(二)教学乘法交换律

引导学生列出算式:3×5,还可以5×3所以3×5=5×3请大家观察这个等式,它有什么特点。你能照着样子,再写出几个这样的等式吗?

4、反馈,请学生说说自己是怎样写的,教师板书。他写的对吗?还有吗?

5、请大家仔细观察一下这些等式,你们有什么发现?先把你的发现跟你的同桌说一说。

6、交流发现,充分让学生用自己的语言表达自己的想法,逐步归纳出乘法交换律:两个数相乘,交换乘数的位置,它们的积不变。这个规律就是乘法的交换律(板书)

7、字母表示如果用a、b分别表示两个乘数,你能用字母来表示乘法交换律吗?根据学生的回答板书:a×b=b×a

[设计意图:让学生自主探索,并通过观察比较,以及充分的交流,发现规律,再逐步抽象、概括出乘法交换律。]

(三)教学乘法结合律

1、出示例题2

2、要解决这个问题,你能用不同的方法来解答吗?

3、让学生自主解答

4、交流解答方法根据学生的回答,板书算式,并让学生说说每种方法的思考过程,还能怎样算?

5、这道题目有两种方法,那你能用“=”号把两个算式连接起来吗?(23×5)×6=23×(5×6)请大家比较等号两边的算式,有什么相同点和不同点?同桌讨论一下。

6、交流相同点和不同点,让学生说说,找出相同点:结果一样,数字一样。不同点:运算顺序不同。

7、那你能照着再写几组这样的等式吗?

8、让学生说说自己是怎样写的,根据学生的回答板书

9、请大家观察这些等式,你有什么发现吗?

10、交流发现,让学生说一说,归纳出乘法结合律:三个数相乘,先把前两个数相乘,再乘第3个数,或者先把后两个数相乘,再乘以第1个数,它们的积不变。

揭题:这就是乘法的结合律。(板书)如果用a、b、c分别表示三个乘数,那乘法结合律可以怎样表示呢?得到字母表达式:(a×b)×c=a×(b×c)让学生读一读,并再说说乘法结合律的意义。

[设计意图:让学生自主探索,并通过观察比较,以及充分的交流,发现规律,再逐步抽象、概括出乘法结合律。]

(四)初步应用,

教学试一试

1、前面,我们运用加法的交换律和结合律,可以进行简便计算。那乘法行不行呢?

2、出示题目,你能用简便方法计算下面两题吗?

3、交流方法:让学生说说是怎样计算的,有不同方法吗?(如果有,都板书出来,进行比较)为什么这样简便?

[设计意图:要使学生认识到:仅仅应用乘法结合律,还不能使计算简便,还得先应用乘法交换律交换乘数5与37(或37与2)的位置,再应用乘法结合律,才能使计算简便。进一步使学生体会计算简便的关键。]

(五)巩固提高、完成想想做做。

1、先填空,再说说应用了什么运算律?最后一个先用交换律,再用结合律,如果学生不清楚,分步写出来转换过程。

[设计意图:有利于培养学生用简便方法计算的意识和能力。可以让学生在思考计算的基础上组织交流。]

2、先算一算,再比较哪种方法简单?说说第2小题为什么简便,应用了什么运算律?

3、很快说出每组气球上三个数连乘的积让学生说说怎样算最快?让学生体会先算两个数相乘得整十数比较简便。

4、想想做做

5、让学生说说从图上能得到哪些数学信息?你能用不同的方法来解答吗?让学生独立解答。交流方法,说说哪种计算简便?

(六)课堂小结

教学理念的设计:

体现学生的自主学习,合作交流,是新课程教学中倡导的基本理念。数学课程标准中提出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。当然独立思考是合作的前提,没有独立思考的合作交流是空的,在本教学中也有体现,例如在进行猜想验证的教学环节中,我要求每个学生自己先写一个式子,再四人小组进行交流,最后全班进行交流。在总结出乘法交换律和结合律的规律时,要求学生用自己的语言叙述概括,用自己的方法把这个规律记住。充分发挥学生的想象力,以就能获得学生创新的思维火花,同时体现“主动参与、积极思考、合作发现、体验成功、健康发展”的教学思路。在巩固练习阶段,充分给学生以自主权,学生以“创造”的空间,并通过比较,感受计算方法的灵活多样,培养学生灵活运用知识进行解题的能力。在练习的设计上,设计了有层次的练习题,使学有余力的学生在原有的基础上有所提高,体现了因材施教的思想,落实了“人人学有价值的数学”、“人人都能获得必要的数学”、“不同的人在数学上得到不同的发展”基本教学理念。

乘法交换律教案篇6

【教材分析】

本课是北师大版数学实验教材四年级上册的一个教学内容,它是在学习了两位数乘两位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程,通过对乘法结合律探索基本步骤的体验为学生今后的数学探索活动打下基础。

【学情分析】

学习方式上:四年级的学生,经历四年的课改实验,已具有一定的发现问题、提出问题、解决问题的能力。同学之间能够较好地合作交流与倾听。能比较主动地探究新知,运用已有的知识经验来学习新知。

知识技能上:在学习本课前,学生已经知道:25×4=100、125×8=1000以及整十整百整千数乘法计算比较简便。

【学习目标】

知识与技能:通过探索活动,发现乘法交换律、结合律,并用字母进行表示。在理解乘法结合律的基础上,会对一些算式进行简便计算。

过程与方法:经历数学探索过程,进一步体会探索的过程和方法。

情感、态度、价值观:感受数学探索的乐趣,培养自主探究问题的能力。

【学习重难点】

探索、发现、理解、应用乘法结合律。

【教学策略】

创设情境,组织探索,引导自主学习。

【教学过程】

一、创设情境,发现问题

师:同学们喜欢搭积木吗?

生:喜欢

师:我们的淘气也很喜欢搭积木,而且聪明的他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?

生:想

师:那好,就让我们一起去探索与发现。

二、探索乘法交换律

播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)

师:你知道图中有多少个小正方体吗?说说自己是怎样想的。

生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。

生:竖着数一排有4个小正方体,一共有5排,4×5=20个。

师(板书5×4=4×5)可以这样写吗?为什么?

生:可以因为积相等,(求的就是一个整体)

师:认真观察这个等式,你能发现什么奥妙吗?

生思考,汇报(数字相同,交换了位置,积不变)

师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?

生:……

师:请你帮淘气举一些这样的例子来验证一下行吗?

生举例验证

师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?

生说师板书:

a×b﹦b×a叫做乘法交换律

师:a。b指的是什么?

(设计意图:乘法的结合律探索中往往包含着交换律,因此先经历交换律的探索过程既把分散的情景整合为一个整体,又为乘法结合律的学习作了铺垫。)

三、探索乘法结合律

1、课件2出示情景图(书54页)

师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?

学生独立观察、思考后集体交流。(说说估计的方法)

师:谁估计的准确呢?请同学们在本子上算一算。

(学生独立思考,计算,教师巡视)

师:谁愿意把你的想法介绍给大家?

生举手汇报,师追问:怎样想的?

师引导从上面、正面观察

上面:(3×5)×4

师:这个算式可以写成(5×3)×4吗?

生:可以,都是求同一个物体,

生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。

师:出示4×(5×3)可以这样写吗?

生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。

正面:(4×5)×3

师:你还可以怎样写?根据是什么?

生:(5×4)×3;3×(5×4)

(设计意图:通过对算式的变换,巩固乘法交换律)

师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×4;3×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。

生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。

师:可以写成(3×5)×4=3×(5×4)吗?

生思考回答。

(设计意图:通过对算式异同的比较,让学生自己发现规律,)

2、提出假设,举例验证

师:你们的发言很精彩,那么象这样的三个乘数的位置不变,改变运算顺序,积不变是不是在其他算式中也存在呢?你还能举出例子来吗?可以是两位数或三位数相乘的,为了节省大家计算的时间,在运算时可以使用计算器

(学生在小组内举例交流讨论,教师巡视指导。)

师:谁愿意介绍一下你们举例的情况。

生:……

3、概括规律

师:从刚才大家所举的例子来看,每一组的结果都是相同的。这样的例子多不多?(生:多)能不能举完呢?(生:不能)那么从中你又能发现乘法运算中的什么规律吗?

生思考概括

师:你们概括得真好,你能用三个不同的字母分别表示乘法算式中的任意三个数字,写出我们发现的规律吗?

生说师板书:

(a×b)×c﹦a×(b×c)叫做乘法结合律

三、运用模型,完成练习

1、学生独立完成“练一练”1题。最后运用课件集体订正。

2、运用乘法结合律很快算出38×25×4;42×125×8

生独立完成,小组交流后汇报

3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。

(设计意图:通过练习让学生能够独立运用乘法结合律进行简便运算。对所学的

知识通过练习加以巩固运用。)

五、小结:

1、这节课你学到了什么?

2、我们是怎样认识这个好朋友的?

乘法交换律教案篇7

1.充分挖掘教材结合学生实际进行再设计。教材中对于乘法结合律和交换律的探索是两个分散的情景,在第一次的备课时我依据书上的过程设计教学,可试课时发现在探索结合律时,学生可以从不同的角度去计算小长方体的块数,但几乎没有用括号的。他们习惯于先算哪一面就把哪两个数字写在前面,教师在引导出书上的算式上也有些牵强,而且我发现学生列出的这些算式中本身就有乘法的交换律。那么何不先探索乘法交换律,把探索交换律的过程作为探索结合律的阶梯,由浅入深,由易到难会让学生更容易接受。因此,我大胆改变教材结构,先探索乘法交换律,并利用淘气这个人物把书中分散的情景进行整合,突出整体性。收到了较好的效果。

2.注意渗透一种科学的学习方法。对于结合律的教学,不应仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,本节课我抓住这一教学重点,有意识地设计了“创设情景,发现问题————提出假设,举例验证 ————概括规律”三个教学环节,使学生经历探究过程,并在此过程中注意渗透“探索与发现”的一般方法,学生学得积极、主动。

3.体现学生的自主学习,合作交流。数学课程标准中提出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。当然独立思考是合作的前提,没有独立思考的合作交流是空的,在本教学中也有体现,例如在进行猜想验证的教学环节中,我要求每个学生自己先写一个式子,再四人小组进行交流,最后全班进行交流。为学生搭建充分参与数学活动的平台,帮助学生在自主探索和合作交流中真正理解和掌握数学知识。

会计实习心得体会最新模板相关文章:

小班科学教案春天来了教案7篇

中班教案秋天的树教案优质7篇

从百草园教案到三味书屋教案7篇

观察类教案7篇

火箭教案7篇

放大图教案7篇

人教版7上英语教案模板7篇

我成功教案7篇

美术父亲教案7篇

小班了教案7篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    86906

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。